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ABSTRACT

Motivation: DNA and protein patterns are usefully represented by

sequence logos. However, the methods for logo generation in

common use lack a proper statistical basis, and are non-optimal for

recognizing functionally relevant alignment columns.

Results: We redefine the information at a logo position as a per-

observation multiple alignment log-odds score. Such scores are posi-

tive or negative, depending on whether a column’s observations are

better explained as arising from relatedness or chance. Within this

framework, we propose distinct normalized maximum likelihood and

Bayesian measures of column information. We illustrate these meas-

ures on High Mobility Group B (HMGB) box proteins and a dataset of

enzyme alignments. Particularly in the context of protein alignments,

our measures improve the discrimination of biologically relevant

positions.

Availability and implementation: Our new measures are imple-

mented in an open-source Web-based logo generation program,

which is available at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/

logoddslogo/index.html. A stand-alone version of the program is

also available from this site.

Contact: altschul@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 19, 2014; revised on August 26, 2014; accepted

on September 18, 2014

1 INTRODUCTION

Patterns or motifs that are shared among multiple DNA or pro-
tein sequences often correlate with important biological func-

tions. A widely used method for representing and studying
such patterns is provided by ‘sequence logos’ (Crooks et al.,
2004; Schneider and Stephens, 1990). A sequence logo represents

concisely two important features of a multiple alignment—the
‘information content’ at each alignment position and the fre-
quencies of the nucleotides or amino acids observed at that pos-

ition. Here, we suggest modifications to the way in which the
information content is usually measured. These modifications
yield a direct connection between the information for an align-

ment position and a multiple alignment log-odds score (Altschul
et al., 2010). We have implemented a program that uses the

modified information measures, and illustrate its application to

protein alignments.

2 METHODS

2.1 Background

Sequence logos were introduced by Schneider and Stephens (1990), and a

popular Web-based logo construction program was made available by

Crooks et al. (2004). A variety of alternative methods for calculating and

presenting logos have since been described (Colaert et al., 2009; O’Shea

et al., 2013; Schuster-B€ockler et al., 2004; Vacic et al., 2006; Workman

et al., 2005). A logo is derived from a multiple alignment, and represents

each position of the alignment by a stack of letters, each corresponding to

a nucleotide or an amino acid. The height of each letter in the stack is

proportional to the observed frequency of the letter at that position, and

the aggregate height of the stack corresponds to the ‘information content’

of the position.

To formalize, assume our alphabet has size L (4 for DNA, and 20 for

proteins), indexed by the first L positive integers, and that the back-

ground frequencies with which these letters appear by chance is given

by the fixed vector ~p. We represent by ~u the special uniform case in

which all pj=1=L. Assume at a given alignment position we have N

observations, given by the vector ~x, with xi 2 f1; . . . ;Lg. Let the

counts of the various letters within ~x be given by the vector ~n, and let

us define the observed frequencies as ~q � ~n=N.

From the information theory (Cover and Thomas, 1991), the entropy

(in bits) of a frequency distribution ~f is defined asHð~fÞ � �
PL

j=1 fjlog2 fj.

Schneider and Stephens (1990) use entropy to define the ‘information

content’ of a given position as the difference between the maximum pos-

sible entropy and that observed at the position as follows:

Rð~xÞ � Hð~uÞ � Hð~qÞ+eðNÞ
� �

=log2L�Hð~qÞ � eðNÞ: ð1Þ

Here, e(N) is a correction for small sample size (Schneider et al., 1986)

(see Appendix, SupplementaryMaterial), which approaches 0 for largeN.

To calculate e(N) using the approach of (Schneider et al., 1986), but

without assuming ~p=~u, requires summing CN+L�1
N =OðNL�1Þ terms.

For proteins, this becomes impractical well before N reaches 30, so the

term e(N) has generally been ignored (Crooks et al., 2004), giving rise to

the measure Uð~xÞ:

Uð~xÞ � Hð~uÞ �Hð~qÞ=log2 L�Hð~qÞ: ð2Þ

Because expectation and summation commute, however, one may calcu-

late e(N) exactly for arbitrary ~p in timeOðLNÞ, and its standard deviation

in time OðL2N2Þ; all factors of L may be dropped when ~p=~u. This does

not appear to have been observed before. Accordingly, while we study

both Rð~xÞ and Uð~xÞ in this article, only Uð~xÞ has previously been in

widespread use for proteins.
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Our proposal is simply to replace Rð~xÞ or Uð~xÞ with one of the two

alternative measures, Að~xÞ or Bð~xÞ, as defined and discussed below.

Although the proposed change may appear minor, in the protein align-

ment context it can have important consequences for the appearance,

interpretation and use of sequence logos.

The WebLogo program (Crooks et al., 2004) implements a number of

modifications to the original theory (Schneider and Stephens, 1990).

These modifications are not described in detail either in Crooks et al.

(2004) or in the program’s user manual, but examination of the code

reveals they are different in substance and spirit from those we advance

here. Thus, for brevity, accuracy and clarity, we will compare our

proposed measures of column information only with the original measure

RðxÞ of Schneider and Stephens (1990) and its uncorrected form Uð~xÞ.

The measure implemented by WebLogo is the closest in form and out-

put to Uð~xÞ.

2.2 The log-odds perspective

The average per-observation information available for distinguishing a

stretch of symbols that follows a known probability distribution ~q from

a stream of symbols that follows a background distribution ~p is gener-

ally understood to be the distributions’ relative entropy (Cover and

Thomas, 1991):

Dð~qjj~pÞ �
XL
j=1

qjlog2
qj
pj
: ð3Þ

By continuity, one may set 0log20 � 0, and thus renderD well-defined for

~q in which some components are zero. The asymmetry of D in ~q and ~p

can be understood by considering the relative ease of recognizing a stretch

of a dozen fair coin flips within a sea of million that are 99.9% biased

toward heads, compared with the converse.

To recognize a DNA motif within a long stretch of DNA is a similar

problem, except that the frequency of nucleotides within the motif dif-

fers from the background frequencies in a position-dependent manner.

In the infinite N limit, a motif’s frequencies at an individual position may

be taken as a known, fixed vector ~q, so the average information available

per observation should be given by Equation (3).

In the case of uniform background frequencies,

Dð~qjj~uÞ=
XL
j=1

qj log2
qj
uj
=
X
j

qj log2 qj �
X
j

qj log2 uj

=log2 L�Hð~qÞ;

ð4Þ

so that the relative-entropy measure of column information is numeric-

ally equal to Schneider and Stephens’ measure. However, the two def-

initions differ substantially when ~p 6¼ ~u, which is the case for many

organisms of interest. Most obviously, for a column dominated by

a particular letter a, so that qa � 1, the R of Equation (1) approaches

log2L bits, whereas the D of Equation (3) approaches log21=pa bits.

In other words, relative entropy yields higher information content for

columns dominated by a letter with lower background frequency.

Schneider et al. (1986) suggested relative entropy as an alternative to

1 for measuring column information, but Schneider and Stephens (1990)

did not pursue this suggestion further. Relative entropy has also been

advocated by Lawrence et al. (1993), Schuster-B€ockler et al. (2004),

Stormo (1998) and Workman et al. (2005). Crooks et al. (2004)

have made the same suggestion, but contrary to their statement, repla-

cing ~u by ~p in Equation (1) does not render the two measures

equivalent.

Before turning to the smallN case, it is useful to observe that, given a ~q

exactly proportional to ~n, relative entropy can be understood as the

per-observation log-odds ratio of Qð~xÞ to Pð~xÞ, where Qð~xÞ and Pð~xÞ

are the likelihoods of generating ~x given the two alternative multinomials

~q and ~p. In other words,

1

N
log2

Qð~xÞ

Pð~xÞ
=

1

N
log2

Q
j qj

njQ
j pj

nj
=

1

N

X
j

nj log2
qj
pj
=Dð~qjj~pÞ: ð5Þ

By requiring, for smallN, thatQ remain a probability distribution over ~x,

the log-odds perspective provides the key to our proposed measures of

column information.

The special status of log-odds scores has long been recognized in the

local alignment context (Altschul, 1991; Karlin and Altschul, 1990).

There, the formalism is used explicitly to construct all popular pair-

wise substitution matrices (Henikoff and Henikoff, 1992; Schwartz and

Dayhoff, 1978). A negative log-odds score simply means that the aligned

letters are explained better by a model of chance than a model of related-

ness. There are many advantages to extending log-odds scores to multiple

alignments, as discussed at length in Altschul et al. (2010). They may, for

example, be used in a principled way to distinguish related from unrelated

alignment regions and to include or exclude sequences from a multiple

alignment (Altschul et al., 2010). In this article, we show empirically that

even within alignments of related protein sequence regions, the relative

importance of alignment positions, which logos are designed to represent,

is better captured using log-odds scores than other measures of column

information in common use.

2.3 The normalized maximum-likelihood-based column

information measure

For finite N, although the background ~p remains fixed, ~q is taken to be

the maximum-likelihood multinomial ~n=N implied by the observation ~x,

and thus varies from one ~x to another. For a fixed multinomial, the

likelihoods for all possible ~x sum to 1, and may therefore be considered

probabilities, but this is no longer the case if ~q varies with ~x. Instead, this

sum is given by Z �
P

~x

Q
jðnj=NÞ

nj . In minimum description length

theory, log2Z is called the complexity of the multinomial model, and

the measure Að~xÞ described below can be seen as derived from the nor-

malized maximum-likelihood description length of ~x (Gr€unwald, 2007).

To convert the likelihoods for the ~x implied by ~qð~xÞ into probabilities,

they must be divided by Z, so that we must write Qð~xÞ=ð
Q

j
qj

nj Þ=Z.

Thus, the log-odds perspective of Equation (5) leads us to define our

per-observation log-odds measure of column information as follows:

Að~xÞ �
X
j

qj log2
qj
pj

 !
� cðNÞ; ð6Þ

where cðNÞ � 1
N log2

P
~x

Q
jqj

nj approaches 0 for large N and plays an

analogous but logically and numerically distinct role to the term e(N)

in Equation (1). We give values of c(N) for small N in Supplementary

Tables S1 and S2, and derive in the Appendix (see Supplementary

Material) an asymptotic formula for c(N). Interestingly, for large N

and ~p=~u, eðNÞ � cðNÞ=lnN (Altschul et al., 2009; Schneider et al.,

1986). The Rð~xÞ that results from Equation (1) has expected value 0 for

columns of random letters, whereas in this context, Að~xÞ has negative

expected value, because of its derivation as a per-observation log-odds

score (Altschul et al., 2010; Karlin and Altschul, 1990).

2.4 The BILD-score-based column information measure

The approach above calculates Qð~xÞ by inferring a maximum-likelihood

multinomial ~qð~xÞ for each ~x, and normalizing the resulting likelihoods.

An alternative Bayesian approach is to define a prior probability density,

over the space of all L-letter multinomials, for the ~q associated with a

motif column. Qð~xÞ may then be taken as the probability of observing ~x

implied by this prior. Because no parameters are fitted, no correction

term analogous to c(N) above is needed.

This approach is mathematically tractable if the prior is chosen as a

Dirichlet mixture (Altschul et al., 2010; Brown et al., 1993; Sj€olander
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et al., 1996). Such a mixture, the superposition of M Dirichlet compo-

nents, is specified by its mixture parameters ~m (M positive numbers

that sum to 1), and its Dirichlet parameters ~� i;j (positive numbers indexed

by i 2 f1; . . . ;Mg and j 2 f1; . . . ;Lg). It is convenient to define ‘concen-

tration parameters’ �i �
P

j�i;j. The resulting measure of column infor-

mation is given by the following:

Bð~xÞ �
1

N
log2

Qð~xÞQ
j pj

nj
ð7Þ

where

Qð~xÞ=
XM
i=1

mi
Gð�iÞ

Gð�i+NÞ

YL
j=1

Gð�i;j+njÞ

Gð�i;jÞ
: ð8Þ

This is the per-observation ‘Bayesian Integral Log-odds’ or ‘BILD’ score

defined in Altschul et al. (2010).

A more indirect Bayesian approach, which we have not implemented,

is first to infer, from the prior and the observations, a posterior multi-

nomial ~̂q (Altschul et al., 2010; Brown et al., 1993; Sj€olander et al., 1996)

and then to calculate a column-information score based on ~̂q. This may

be done using Equation (6), but with its second qj replaced by q̂j, and with

qj replaced by q̂j in the formula for c(N). The correction term c(N) now

depends on the priors used, so the values given in the Supplementary

Tables S1 and S2 no longer apply, nor do the constants derived in the

Appendix for the asymptotic formula for c(N). Minus its log-odds cor-

rection for sample size, this alternative Bayesian approach has strong

similarities to the HMM measure proposed in Schuster-B€ockler et al.

(2004). For proteins, both use Dirichlet mixtures to take account of the

prior knowledge concerning amino acid relationships, as do BILD scores.

However, as we will see below, properly correcting scores for small

sample size (a distinct issue) is important if one wishes to compare the

scores of columns containing differing numbers of observations.

2.5 Relationship of measures A and B

A fairly deep connection exists between measures A and B. To a first

approximation, the two measures are equal when the Bayesian prior

required for B is taken as a single Dirichlet with all �j=1=2

(Gr€unwald, 2007). This is known as the Jeffreys prior, and is uninforma-

tive in a truer sense than the uniform prior, which has all �j=1

(Gr€unwald, 2007; Jeffreys, 1946). Thus, measure A may be seen, in es-

sence, as a special case of measure B, in which no prior knowledge con-

cerning relationships among the letters is available.

If there is substantial prior knowledge about which letters are likely to

co-occur in columns representing true relationships, then by capturing

this knowledge through its priors, the BILD-score-based measure of

Equations (7) and (8) should, for related columns, usually exceed the

normalized maximum-likelihood-based measure of Equation (6).

Because such prior knowledge is available for proteins, we prefer Bð~xÞ

to Að~xÞ in this context. It is less clear that B will have any substantial

advantage to A for DNA.

2.6 Logo boundaries

Basing measures of column information on log-odds multiple alignment

scores provides an automatic means for determining boundaries for a

logo (Altschul et al., 2010). Because log-odds scores represent the infor-

mation for distinguishing true from chance similarities, it is appropriate

to seek logos with maximum implied log-odds score (Altschul et al., 2010;

Karlin and Altschul, 1990). This is achieved by choosing a contiguous set

of columns that maximizes
P

kNkAð~xkÞ or
P

kNkBð~xkÞ, where Nk is the

number of observations in column k, and ~xk is the associated observation

vector. This optimization may be achieved using the algorithm of Smith

and Waterman (1981), simplified to the one-dimensional case.

2.7 Sequence weights

The mathematics underlying multiple alignment log-odds scores (Altschul

et al., 2010) makes the implicit assumption that the letters observed in a

column are independent draws from the multinomial representing that

column. This is a reasonable assumption for most DNA multiple align-

ments, where the constraints on sequence are primarily physical (as in the

alignment of instances of a transcription factor’s binding sites across a

genome) rather than historical. However, many or most protein multiple

alignments contain some sequences that are similar primarily due to

recent ancestry rather than to physical constraints. This problem may

be mitigated through sequence weighting (e.g Altschul et al., 1989;

Henikoff and Henikoff, 1994; Sunyaev et al., 1999). Such weighting

should account not only for the relative frequencies of the residues

observed in each column but also for the effective number of independent

observations as well (Altschul et al., 1997, 2009; Brown et al., 2007;

Sunyaev et al., 1999). Here, we use the weighting method of Sunyaev

et al. (1999) as modified in Altschul et al. (2009). The method yields

aggregate numbers of independent observations that vary by column,

even for alignments without gaps; this result is consistent with the idea

that evolution proceeds at different rates at different protein positions.

2.8 Program

We have modified the open-source WebLogo code (Crooks et al., 2004)

to implement the definitions of column information presented above. The

new program, LogOddsLogo, is available at http://www.ncbi.nlm.nih.

gov/CBBresearch/Yu/logoddslogo/index.html

A stand-alone version of the program is also available from this site.

The program’s most important features are as follows:

(1) The user may select either Að~xÞ of Equation (6) or Bð~xÞ of

Equations (7) and (8) to calculate the information content of

sites. In either case, this information may be understood as a

per-observation log-odds score. The measures Rð~xÞ and Uð~xÞ

may also be specified. Null or gap characters are ignored, and

not counted toward the number of observations in a column.

(2) Because log-odds scores measure the relative evidence for models

of relatedness and chance, information may be positive or negative,

and is thus represented in the logo by positive or negative depart-

ures from the axis.

(3) For proteins, if amino acid counts are calculated from a multiple

alignment, as opposed to being supplied explicitly, the user has the

option of automatically calculating weighted observations

(Altschul et al., 2009; Sunyaev et al., 1999) for each residue.

To apply measure B, one needs to specify a Dirichlet mixture prior.

For DNA logos, we take this prior to be a single Dirichlet distribution,

with parameters �j=�pj. The user may specify the concentration param-

eter �, but we set �=1 by default, as recommended in Nishida et al.

(2009). As in WebLogo (Crooks et al., 2004), the background frequencies

pj are uniform by default, but the user may select those characteristic

of various model organisms, or specify an arbitrary cytosine-guanine

(CG) percentage. To apply measure B to proteins, the user may select

among several Dirichlet mixtures, and amino acid background frequen-

cies are then inferred from the mixture chosen. For other measures, the

background frequencies of Robinson and Robinson (1991) are used. The

stand-alone version of the program also allows the user to specify arbi-

trary background amino acid frequencies.

3 RESULTS

In the DNA context, it is appropriate to posit ignorance and
use Jeffreys priors, essentially rendering measures A and B

equivalent. Furthermore, although these measures are formally
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distinct from the entropy difference measure (Schneider and

Stephens, 1990), for uniform background frequencies, they

differ only by an N-dependent constant, which approaches 0 as

N grows. Measures A and B do differ substantially from entropy

difference in the important case of non-uniform background

frequencies, but for large datasets, they are still similar to the

known relative-entropy measure. Thus, it is primarily in the

protein context that a user will encounter noticeable differences

between the measures we propose and other measures in

common use. Here, to apply measure B to proteins, we use the

Dirichet mixture ‘dist-ncbi134’, described in Nguyen et al. (2013).

For the sake of consistent comparison, we use the background

frequencies implied by this mixture throughout.
When used to analyze proteins, logos are usually applied to

multiple alignments in which all the sequence segments included

are, in fact, related. The primary purpose is to visualize those

positions that are the most conserved, and thus presumably the

most relevant to protein structure and function. To illustrate

the behavior of our various measures, we first apply them to a

particular HMGB box alignment in which the most important

positions may be independently determined by structural features

and by conservation within a broader encompassing family.

Second, we consider a set of alignments of enzyme families, in

which the catalytic sites stand as proxies for the most important

positions.

3.1 HMGB box proteins

We consider a subset of the HMGB box family of DNA bind-

ing proteins (http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.

cgi?hslf=1&uid=cd01388&#seqhrch) prepared from the

Conserved Domain Database (CDD) at NCBI (Marchler-

Bauer et al., 2013).
We downloaded 24 aligned domains of the HMGB box

domain from the SOX-TCF_HMG-box subfamily for use in

this analysis (Supplementary Table S3). These subsequences

comprise the �69–72 amino acid long DNA-binding domain,

and were aligned with reference to the Saccharomyces cerevisiae

protein NHP6A (Masse et al., 2002) with known structure (PDB:

1J5N http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.

cgi?uid=49732).
The HMGB box proteins form a large family with a wide

range of DNA-binding functions and specificities. A subgroup

within the family consists mostly of DNA-binding proteins that

bind to specific target sequences, and the structures of several of

the domains have been determined. For example, the structure of

NHP6A (Masse et al., 2002) is similar to that of other HMGB

box protein domains such as TCF/LEF-1 and SRY (Stros,

2010). The compact domain contains a conserved sequence

motif described in Landsman and Bustin (1993). These sequences

fold into an L-shaped structure with three alpha helices and an

unstructured N-terminal peptide. Using various considerations

described in the caption of Figure 1, and illustrated in the

Supplementary Figure S1, a set of 18 positions, numbered 5–

10, 12, 17, 25, 29, 37, 40, 43, 47, 48, 51, 62 and 69 within our

alignment, can be identified as particularly important. Below, we

will consider these 18 positions to be either true-positives or false-

negatives, and all other positions either false-positives or true-

negatives.

The four panels of Figure 1 show sequence logos for our
HMGB box alignment that were constructed, respectively,
using the information measures U, R, A and B. We weighted

sequences using the method of Sunyaev et al. (1999) as modified
in Altschul et al. (2009). All four measures report scores in bits,
and are shown using a common scale, but only measures A and

B, which have a similar log-odds interpretation, are directly com-
parable. For each measure, we selected a threshold score that
yields seven false-positives, and the corresponding logo positions

are colored blue. (Despite their designation here as ‘false-
positives’, these strongly conserved positions may well have im-
portant biological functions that have not yet been described.)

Using these thresholds, we have colored true-positive positions
red and false-negative positions orange. The measures U, R, A
and B yield, respectively, 13, 13, 15 and 18 true-positives. The use

of seven false-positives here is arbitrary. Different choices would
yield different threshholds for separating true-positives from
false-negatives, but broadly similar qualitative results.

Comparing the panels of Figure 1 for measures U and R, it is
evident that by correcting for the noise from small sample sizes,
measure R renders the most important positions more visually

prominent. However, for an alignment in which all columns con-
tain the same number N of independent observations, measures
U and R differ only by the constant correction term e(N), and

thus, with corresponding thresholds, will always yield the same
false- and true-positives. Because the weighting system we use
(Altschul et al., 2009; Sunyaev et al., 1999) yields estimates for N

that vary by column, measures U and R yield true-positives and
false-negatives that are not completely congruent, although
nevertheless similar. As we will see below, these measures can

differ greatly when applied to sets of alignments containing
widely varying numbers of sequences.
Measure A differs from R in two major respects. First, its

correction term c(N) is generally greater than e(N). This results
in a more complete visual suppression of noise from non-
conserved positions. Second, A attributes relatively greater infor-

mation to positions populated primarily by rare amino acids.
Comparing the panels of Figure 1 for measures R and A, this
results in the elevation to true-positives of positions 10, 12, 62

and 69, whose most frequent amino acids are, respectively, the
relatively rare M, F, H and Y. At the same time, it results in the
demotion to false-negatives of positions 37 and 47, whose most

frequent amino acids are the relatively common G and E,
respectively.
Among our measures, B is the only one to exploit prior

amino acid relationship information. For alignments of related
sequences, B thus yields greater reported information than A at
almost all positions. This information increase will not necessar-

ily be greater for important positions, but in our example it ele-
vates to true-positive positions 37, 47 and 48. This stems,
respectively, from the recognized relationships among the small

G and A, the polar and negatively biased E, Q and D and the
polar and positively biased K, Q and R (Brown et al., 1993;
Nguyen et al., 2013).

One may not conclude from this single example that measure
B will on average outperform A at recognizing important align-
ment positions, or that A will outperformU and R. However, the

example illustrates the qualitative features that differentiate these
measures and affect their performance.

327

Log-Odds Sequence Logos

-
 quite
``
''
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=cd01388&#seqhrch
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
 the
-
http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=49732
http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=49732
http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=49732
very 
t
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
-
)
7
``
''
,
7
employ
; Altschul etal., 2009
 very
 respectively
s
,


F
ig
.
1
.
L
o
go

s
fo
r
H
M
G
B
b
o
x
d
o
m
ai
n
s
p
ro
d
u
ce
d
u
si
n
g
th
e
co
lu
m
n
in
fo
rm

at
io
n
m
ea
su
re
s
U
,
R
,
A
a
n
d
B
.
T
h
e
al
ig
n
m
en
t
o
n
w
h
ic
h
th
e
lo
go

s
ar
e
b
as
ed

is
gi
ve
n
in

S
u
p
p
le
m
en
ta
ry

T
a
b
le
S
3.
B
a
se
d
o
n
a

va
ri
et
y
o
f
co
n
si
d
er
at
io
n
s,

a
se
t
o
f
18

p
o
si
ti
o
n
s
ar
e
id
en
ti
fi
ed

as
‘i
m
p
o
rt
an

t’
.
S
p
ec
if
ic
a
ll
y,

fr
o
m

th
e
st
ru
ct
u
re

o
f
L
-s
h
ap

ed
N
H
P
6A

,
p
o
si
ti
o
n
s
8,

12
,
40
,
an

d
43

h
a
ve

b
ee
n
id
en
ti
fi
ed

as
p
ri
m
ar
y

h
yd

ro
p
h
o
b
ic
co
re

re
si
d
u
es

at
th
e
b
en
d
o
r
cr
u
x,
an

d
p
o
si
ti
o
n
s
47
,
48

an
d
51

as
re
si
d
u
es

o
f
‘a
lp
h
a
h
el
ix
3’
to

w
h
ic
h
th
ey

jo
in
,
as

il
lu
st
ra
te
d
in

p
an

el
A

o
f
S
u
p
p
le
m
en
ta
ry

F
ig
u
re

S
1.
P
o
si
ti
o
n
s
17

an
d
25

ar
e
k
ey

re
si
d
u
es

m
ai
n
ta
in
in
g
th
e
co
n
ta
ct
s
b
et
w
ee
n
a
lp
h
a
h
el
ix
1
an

d
2
b
y
h
yd

ro
p
h
o
b
ic
in
te
ra
ct
io
n
s
(S
u
p
p
le
m
en
ta
ry

F
ig
.S

1,
p
an

el
B
).
T
h
es
e
co
n
st
it
u
te
al
l
th
e
in
te
ra
ct
io
n
s
d
es
cr
ib
ed

in
m
ai
n
ta
in
in
g
th
e

co
m
p
ac
t
st
ru
ct
u
re

o
f
N
H
P
6A

(M
a
ss
e
et

a
l.
,
20
02
).
F
o
r
th
e
D
N
A
-b
in
d
in
g
co
n
ta
ct
s
in

N
H
P
6A

,
p
o
si
ti
o
n
s
eq
u
iv
al
en
t
to

o
u
r
6,

9,
10

an
d
2
9
fo
rm

h
yd

ro
p
h
o
b
ic
w
ed
ge
s
in
to

th
e
m
in
o
r
g
ro
o
v
e
o
f
th
e

D
N
A
(M

as
se

et
a
l.
,
20
02
),
(S
u
p
p
le
m
en
ta
ry

F
ig
.S

1,
p
an

el
C
).
In

a
d
d
it
io
n
,
p
o
si
ti
o
n
s
5,
7,
3
7,
6
2
an

d
69

h
a
ve

p
re
v
io
u
sl
y
b
ee
n
id
en
ti
fi
ed

as
im

p
o
rt
an

t
fr
o
m

an
al
ig
n
m
en
t
o
f
th
e
la
rg
er

fa
m
il
y
fr
o
m

w
h
ic
h

o
u
r
su
b
se
t
o
f
se
q
u
en
ce
s
ar
e
d
ra
w
n
(L
an

d
sm

an
an

d
B
u
st
in
,
19
9
3)
,
(S
u
p
p
le
m
en
ta
ry

F
ig
.
S
1
,
p
a
n
el
D
).
F
o
r
ea
ch

m
ea
su
re

U
,
R
,
A
a
n
d
B
,
co
lu
m
n
s
co
lo
re
d
b
lu
e
id
en
ti
fy

th
e
se
ve
n
h
ig
h
es
t
sc
o
ri
n
g
‘f
al
se

p
o
si
ti
ve
’
p
o
si
ti
o
n
s,
i.
e.
th
o
se

n
o
t
co
n
si
d
er
ed

im
p
o
rt
an

t
b
y
th
e
cr
it
er
ia

a
b
o
ve
.
In

co
n
tr
as
t,
co
lu
m
n
s
co
lo
re
d
re
d
o
r
o
ra
n
ge

id
en
ti
fy

im
p
o
rt
an

t
p
o
si
ti
o
n
s.
U
si
n
g
th
e
sc
o
re

cu
to
ff
s
th
at

yi
el
d
se
ve
n
fa
ls
e-

p
o
si
ti
ve
s
fo
r
th
e
v
ar
io
u
s
m
et
h
o
d
s,
re
d
co
lu
m
n
s
ar
e
‘t
ru
e
p
o
si
ti
ve
s’
an

d
o
ra
n
ge

co
lu
m
n
s
ar
e
‘f
al
se

n
eg
at
iv
es
’.
O
f
th
e
18

im
p
o
rt
an

t
co
lu
m
n
s,
th
e
m
ea
su
re
s
U
,
R
,
A
a
n
d
B
yi
el
d
13
,
13
,
15

a
n
d
18

tr
u
e-

p
o
si
ti
ve
s,
re
sp
ec
ti
ve
ly
.
T
h
e
co
lu
m
n
co
lo
rs

sh
o
w
n
h
er
e
ar
e
fo
r
il
lu
st
ra
ti
ve

p
u
rp
o
se
s
o
n
ly
.
T
h
e
W
eb
L
o
go

p
ro
gr
am

(C
ro
o
k
s
et

al
.,
20
0
4)

co
lo
rs

co
lu
m
n
s
b
as
ed

o
n
am

in
o
a
ci
d
s
p
ro
p
er
ti
es
,
an

d
o
u
r

p
ro
gr
am

in
h
er
it
s
th
is
co
lo
ri
n
g
sc
h
em

e.
In

S
u
p
p
le
m
en
ta
ry

F
ig
u
re

S
2
,
w
e
sh
o
w

th
e
H
M
G
B
b
o
x
lo
go

s
p
ro
d
u
ce
d
u
si
n
g
th
is
d
ef
au

lt
co
lo
ri
n
g
sy
st
em

328

Y.-K.Yu et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu634/-/DC1


3.2 Catalytic sites

There are many structural and functional reasons for particular

sites within protein families to be conserved, and it is difficult to

systematically identify those that should be of most interest to a

biologist. However, one class of positions that may be presumed

to be of particular interest are catalytic sites within enzymes.

Capra and Singh (2007) constructed a dataset of 660 multiple

alignments of enzyme families in which the catalytic sites are

known, and we have applied the measures U, R, A and B to

this dataset, always first weighting the raw amino acid counts

in each column. In Table 1, we show the resulting mean bit

scores, and standard deviations for the dataset’s 1999 catalytic

sites, and 231 059 other sites.
We note, first, that when moving from measure U to R, the

larger decrease in mean score among catalytic vis-a-vis other sites

is caused by our weighting scheme (Altschul et al., 2009; Sunyaev

et al., 1999) assigning on average fewer aggregate independent

counts N to highly conserved columns. As with the HMGB box

proteins, measure A yields even greater average corrections, but

it also adjusts columns’ scores with reference to the background

frequencies ~p. Measure B increases the mean bit score for all

columns vis-a-vis A, but does so to a greater degree for the cata-

lytic sites. In Figure 2, we compare distributions of the various

measures’ catalytic site scores after they have been normalized

using the means and standard deviations of the non-catalytic site

scores. For U, R, A and B, the mean-scaled catalytic site scores

are, respectively, 1.43, 1.80, 2.01 and 2.02, and the median-scaled

scores are 1.89, 1.96, 1.99 and 2.12. Thus, in comparison with U

and R, the log-odds measures improve the separation of most

catalytic site scores from those for the mass of non-catalytic sites.
Receiver-operating characteristic (ROC) analysis (Gribskov

and Robinson, 1996; Sch€affer et al., 2001) is often useful for

comparing retrieval methods. The relevance of this analysis is

somewhat vitiated here, because the non-catalytic sites contain

a large percentage of functionally important positions that have

as much claim to be considered true-positives as the catalytic

sites, and these sites are presumably heavily represented among

those with highest score. Nevertheless, in Figure 3, we show

ROC35000 curves and scores for the pooled results from the cata-

lytic site dataset, representing �15% of all dataset columns.

Measure U gives the uniform score of log220=4:32 bits to all

completely conserved columns, and always prefers them to col-

umns in which more than one type of amino acid is observed;

this yields the long straight-line segment in the curve for measure

U. Failing to correct for small sample size is a particular handi-

cap when scores are given significance outside the context of an

individual multiple alignment, because a highly conserved but

non-uniform column from a large alignment may well be of

greater interest than a uniform column from a small alignment:

measure R thus easily outperforms measure U. By this ROC

Fig. 3. ROC35000 curves and scores for the measures U, R, A and B,

calculated from the pooled column scores from the enzyme alignment

dataset. The 1999 aggregate catalytic sites are considered true-positives

or false-negatives, whereas the 231059 aggregate non-catalytic sites are

considered false-positives or true-negatives. ROC35000 scores for all meas-

ures are given within the figure, along with standard deviations calculated

as described in Sch€affer et al. (2001)

Fig. 2. Distributions of scaled catalytic site scores for the measures U, R,

A and B. Raw scores are normalized by first subtracting the mean non-

catalytic site score, and then dividing it by the non-catalytic site standard

deviation. Boxes show the median and central quartile ranges for all

scaled catalytic site scores. Error bars or ‘whiskers’ show the 5th to

95th percentile ranges. Mean-scaled scores are shown with the symbol ‘X’

Table 1. Mean bit scores for catalytic and

other sites, with standard deviations

Measure Catalytic sites Other sites

U 3.83� 0.71 2.27� 1.09

R 2.44� 0.74 1.08� 0.76

A 2.40� 0.96 0.76� 0.82

B 2.89� 1.09 1.02� 0.93
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analysis, measures A and B outperform R, but neither is signifi-
cantly preferred to the other. Adding prior information concern-
ing amino acid relationships increases, on average, all bit scores,

as seen in Table 1, but it does not appear to favor catalytic sites
more than highly conserved non-catalytic sites.

4 DISCUSSION AND CONCLUSION

We have proposed two distinct definitions for column informa-

tion. Both are per-observation log-odds scores, taking the form
1
N log2½Qð~xÞ=Pð~xÞ�, where Qð~xÞ and Pð~xÞ are probabilities for
the column’s data under alternative models of relatedness and

chance. The first measure A calculates Qð~xÞ using the maximum-
likelihood multinomial ~q=~n=N but then normalizes over the
space of all possible observation vectors ~x, so that Q is a prob-

ability. A is closest in spirit and form to the original measure
proposed by Schneider and Stephens (1990). The second measure
B derives Qð~xÞ from a Dirichlet mixture prior over multinomial

space. B is the per-observation BILD score from Altschul
et al. (2010).
In the DNA context, the assumption of ignorance underlying

the measure A may yield the best information measure from the
perspective of a molecule that is trying to recognize a DNA
control element (Schneider, 1994). Other perspectives, however,

are possible. Empirical study has shown that the multinomials
characteristic of naturally occurring DNA motifs are more likely

to be skewed toward a single nucleotide than even the Jeffreys
prior would suggest. Thus, from a human perspective, more in-
formation for distinguishing motif from non-motif positions is

attainable by using, e.g. a prior in which all �j=0:25 (Nishida
et al., 2009).
When protein motifs are described with logos, even the mo-

lecular perspective of Schneider (1994) may be misleading.
A protein may be seen as trying to achieve a particular conform-
ation or structure within the constraints imposed by protein

physics. The resulting correlations among amino acid frequencies
at individual positions, which we discover empirically (Brown
et al., 1993; Nguyen et al., 2013; Sj€olander et al., 1996), may

be taken as implicitly known to evolution. To measure the infor-
mation inherent in a protein motif, it is thus reasonable to use
a Dirichlet mixture prior that captures these correlations, and

not to be bound by an uninformative prior.
All local pair-wise alignment scores may be seen as log-odds

scores (Altschul, 1991; Karlin and Altschul, 1990), and all popu-

lar local alignment programs (Altschul et al., 1990, 1997; Pearson
and Lipman, 1988; Smith and Waterman, 1981) may be under-

stood as optimizing pair-wise log-odds scores. Extending the log-
odds formalism to multiple alignments (Altschul et al., 2010)
retains many of the features that render it useful for pair-wise

alignment.
We have modified the open-source program of Crooks et al.

(2004) to use the log-odds measures Að~xÞ and Bð~xÞ as well as the
entropy difference measures Uð~xÞ and Rð~xÞ. Applying all these
measures to an alignment of HMGB box proteins, and to a
dataset of enzyme alignments, we found that log-odds scores

facilitate the recognition of structurally and functionally import-
ant sites. For protein alignments, we prefer Bð~xÞ on the theoret-
ical grounds that prior knowledge concerning amino acids

relationships is implicitly available to evolution and thus relevant

to analyzing protein families. There is also some evidence that

exploiting this knowledge increases the separation by score

of biologically important from less important sites. We have

made Web-based and stand-alone versions of our program

available.
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