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Abstract

Human genomes hold a record of the evolutionary forces that have shaped our species. Advances 

in DNA sequencing, functional genomics, and population genetic modeling have deepened our 

understanding of human demographic history, natural selection, and many other long-studied 

topics. These advances have also revealed many previously underappreciated factors that influence 

the evolution of the human genome, including functional modifications to DNA and histones, 

conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation 

patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead 

to significant breakthroughs in understanding what makes us human and why we get sick.

Keywords

human evolution; population genetics; evolution of gene regulation; evolutionary medicine

Introduction

Understanding the evolution of the human genome is a tantalizing goal. Accurately decoding 

the biological programs encoded in the human genome would reveal molecular answers to 

fundamental questions about human origins and the genetic basis for human-specific traits. 

Studying the evolutionary and demographic history of our species also has great promise to 

reveal how and why modern humans get sick. The human genome has been shaped by 

evolutionary pressures that, in many cases, no longer reflect the circumstances of most 

humans, and this mismatch between our genes and our environment can lead to disease 

[1,2].

In spite of immense progress since the sequencing of the first human genome more than 10 

years ago, there is still much we do not understand about the evolution of the human 

genome. Recent statistical and experimental advances and the sequencing of thousands of 

human genomes from diverse populations have revealed significant complexity in classical 
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topics in human population genetics, including the dynamics of selection across human 

populations and closely related species [3–6], the determinants of variation in mutation rates 

[7,8], inference of ancient human population histories [9,10], and how variants, in particular 

rare variants, contribute to phenotypes [11–13]. Perhaps the most dramatic result in this field 

over the past five years has been the sequencing of ancient DNA from archaic hominins, like 

Neanderthals and Denisovans [14,15], and the comprehensive demonstration of admixture 

between the ancestors of modern humans and several archaic hominin groups [16–20]. Each 

of these topics has been covered in recent comprehensive reviews (referenced above) and a 

recent issue of this journal [21], so here we highlight several additional genetic, 

environmental, and demographic factors influencing human genome evolution that we 

believe deserve further attention (Figure 1).

How do gene regulatory processes influence human genome evolution?

In the 40 years since King and Wilson hypothesized that phenotypic differences between 

closely related species were driven by gene regulatory changes, considerable support has 

been found for the importance of cis-regulatory elements (CREs), such as promoters and 

enhancers, in human evolution [22,23] and disease [24,25]. The recent ability to map gene 

expression, transcription factor (TF) binding sites, and histone modifications genome-wide 

in many tissues and species [26–28] has revealed that, while gene expression is generally 

conserved within similar tissues across species [29], CREs experience rapid turnover [30–

32]. For example, a recent study of liver promoters and enhancers across 20 mammalian 

species found that 25% of a species’ enhancers and 10% of its promoters were unique, even 

when the underlying sequence was deeply conserved [33]; similar results were found for 

limb CREs across human, macaque, and mouse [34].

There is still much to be learned about the evolution of regulatory sequence, in particular 

about its dynamics across tissues, species, and different classes of CREs, and how selection 

acts on these elements. For example, transposable elements (TEs) have helped reprogram 

gene regulatory networks in tissues relevant to pregnancy in humans and other mammals 

[35]. In contrast, TEs have made only a modest contribution to the evolution of new CREs 

in the liver [33]. This suggests that, while fast turnover of CREs and conserved gene 

expression are common features of mammalian genome evolution, different evolutionary 

dynamics and pressures act on CREs active in different tissues. It is likely that the regulatory 

landscapes of some tissues are more conducive to turnover than others; for example, tissues 

with greater phenotypic diversity across species, like those involved in pregnancy, may be 

more susceptible to TE-based rewiring. The maintenance and modification of these 

regulatory processes and their influence on genome evolution requires further investigation.

Integrating genome-wide maps of CREs, TF binding, and expression with recent advances 

in techniques for determining in vivo chromatin conformation of DNA [36] may provide a 

promising framework for modeling the influence of gene regulation on genome evolution. A 

recent study of chromatin looping in multiple human and mouse tissues found significant 

conservation of gene activity within local topological domains across cells and species [37]. 

These results suggest that, as is true for proteins, the 3D structure of regulatory 

neighborhoods maybe more deeply conserved and important for function than the sequence-
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level conservation of individual CREs. Integrating data about genome structure and CREs 

across many individuals will likely lead to better models of regulatory sequence evolution 

and how selection acts on gene expression across evolutionary time and tissues.

How do chemical modifications to DNA and histones constrain human 

genome evolution?

The human body contains hundreds of different cell types with diverse forms and functions, 

yet each cell contains (essentially) the same genome. The past decade has seen increasing 

appreciation for the role of DNA and histone modifications, such as methylation and 

acetylation, in the diverse gene expression programs observed across different cell types 

within complex organisms [38–40]. These modifications can be influenced by 

environmental factors [41] and in some cases inherited across generations, though the extent 

of trans-generational inheritance in humans is still unclear [42].

In spite of extensive work linking these modifications to nearly all processes of 

development, aging, and disease [39,43–45], the influence of these modifications on patterns 

of genome sequence evolution has received comparatively little attention. For example, the 

extent to which the potential for chemical modification places constraint on DNA sequence 

patterns, e.g, CpG sites, is not resolved. Several recent studies have explored the degree of 

conservation of DNA and histone modifications across humans and closely related species 

[31,33,34,46–48]; changes to the modification status of orthologous regions are common 

between closely related species and, for DNA methylation, there is a positive correlation 

between sequence variation and promoter methylation changes. However, even in the 

presence of deep sequence conservation, many sites show differential modification. Much 

work remains to model the evolution of these modifications between individuals and species 

and to identify associated sequence constraints (or lack thereof). Understanding the 

evolution of these modifications may help resolve debates about whether specific 

modifications are causal or are the result of other processes like TF binding and transcription 

[49].

How should interactions between multiple genetic variants and phenotypes 

be modeled?

The majority of human phenotypes of clinical and evolutionary interest are specified by 

multiple loci across the human genome. Developing models that account for relationships 

between multiple genetic variants and phenotypes will be critical to fully dissecting the 

evolution and complex genetic architecture of most human traits. For example, pleiotropy—

when a locus influences multiple independent traits—is found throughout the human 

genome; however, there is still considerable uncertainty about its prevalence and influence 

on genome evolution [50–53]. Similarly, epistasis—a non-additive interaction between 

genetic variants—is common in model organisms, but its influence on human traits has been 

controversial due to a number of technical and biological factors that can confound current 

tests for interactions between variants [54,55]. Each of these areas is in need of new 
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statistical approaches that update existing models to make full use of the wealth of genotype 

and phenotype data that have become available in the last five years.

What are the causes and effects of mutational biases along the human 

genome?

There is considerable variation in the rate and pattern of substitution along the human 

genome. Failure to account for these biases can confound tests for selection, complicate 

demographic inference, and weaken power in association tests [7]. One of the most 

potentially influential mutational biases is a recombination-associated process called GC-

biased gene conversion (gBGC). gBGC results from a slight preference for G/C alleles in the 

mismatch repair machinery that has the potential to promote the maintenance of deleterious 

alleles [57]. The action of gBGC is widespread in human populations and across diverse 

species [58–60]. Genome-wide modeling of gBGC has demonstrated differences in its 

strength across the human and chimpanzee lineages [59] and between different human 

populations [61,62].

The evolution and effects of gBGC are intimately tied to the dynamics of recombination, 

which vary considerably in rate along the genome within human populations and between 

closely related species [63]. Recombination patterns influence many drivers of genome 

evolution, including the efficacy of selection, mutation rates, and the accumulation of 

deleterious mutations [64,65]. In humans, the fast evolving PRDM9 protein directs 

recombination to specific hotspots based on the occurrence of a GC-rich motif [66]. Using 

modern and archaic genome sequences, modeling suggests that gBGC degrades the PRDM9 

motif over time and that this may drive the rapid turnover of the recombination landscape in 

human populations [67].

gBGC is only one of several sources of mutation rate variation that are not well understood 

[7]. Recent direct estimates from trios indicate that the human germline mutation rate is only 

half of what is expected from phylogenetic estimates [68], and analysis of whole genome 

sequence data suggests the evolution of population-specific mutation rates since the 

divergence of Europeans and Asians [69]. These results underscore the need for further 

study of the dynamics and causes of human mutation rate variation across evolutionary time 

and genomic space. We need to develop high-resolution maps of mutation rates in different 

populations, better models of how it interacts with selection and recombination, and most 

importantly, a deeper understanding of its effects on organismal fitness.

What are appropriate models for the evolution and functional impact of 

structural variation?

The initial comparison of the draft human and chimpanzee genomes identified 

approximately 35 million single nucleotide polymorphisms (SNPs), 5 million small 

insertions and deletions (indels), and hundreds of larger structural variants (SVs). Indels and 

large SVs account for far more nucleotide differences between the human and chimpanzee 

genomes than SNPs [70] and have restructured the genomes of great apes [71]. Recent work 

on de novo rates of indels and SVs in human populations found that structural changes are 
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much more rare and occur at lower frequency than SNPs; nonetheless, they influence an 

average of 4.1 kilobases per generation, which is 91 times more than de novo substitutions 

[72]. Indels and large SVs (including copy number variants, inversions, and other genomic 

rearrangements) are more likely to cause disease and have been hypothesized to have a 

greater influence on recent human evolution than SNPs [73,74]. Indeed, many human- and 

population-specific SVs have been tied to human-specific phenotypes [75], e.g., human-

specific deletion of a conserved enhancer of the androgen receptor gene may be responsible 

for the lack of penile spines in humans [76]. It has also been suggested that de novo creation 

of new genes is more common than previously appreciated; tens of new human-specific 

genes have been detected, with particular enrichment for expression in the brain and testes 

[77,78].

In spite of the potential importance of indels, large SVs, and new genes to phenotypic 

differences between human individuals and between closely related species, they have 

received considerably less attention in evolutionary modeling and testing for association 

with disease than SNPs. Developing appropriate models for the evolution of indels and SVs 

faces several challenges including the difficulty of accurately identifying them in short read 

sequencing data, the diversity of mechanisms that generate them, and their highly 

heterogeneous mutation rates and distributions along the genome [72,79]. Nevertheless, it is 

essential to develop evolutionary models akin to those in common use for testing hypotheses 

about patterns of single nucleotide variant evolution and association with disease for indels 

and SVs. Sufficiently accurate maps of these events across hundreds of humans are now 

becoming available [79,80]; these data should facilitate the development of new modeling 

approaches.

How can we efficiently connect human-specific genomic changes to 

phenotypes?

Sequencing the genomes of thousands of humans, several archaic humans, and our closest 

great ape relatives has revealed thousands of loci in the human genome that have 

experienced accelerated evolution on the human lineage and hundreds more with signatures 

of recent positive selection [81–83]. These loci hold the promise of explaining much of 

human-specific biology, and many hypotheses have been proposed about their effects [75]. 

However, beyond a handful of successes that involved detailed experimental validation 

[76,84–88], connecting these mutations to effects on human phenotypes has been difficult. 

The first obstacle comes from the fact that the vast majority of these regions are non-coding 

and have minimal functional annotation. Furthermore, most human-specific traits have 

complex genetic architectures in which many coding and non-coding loci influence the 

phenotype [89]. Finally, appropriate model systems in which to test potential effects of 

mutations are not available for many phenotypes, and it is challenging to test variants in a 

high throughput manner in available systems.

Algorithmic and experimental innovations paired with increases in available phenotype and 

functional genomic data will significantly increase the pace with which human-specific 

variants can be characterized. For example, algorithms that integrate diverse functional, 

evolutionary, and DNA sequence data have shown that many human accelerated regions are 
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developmental gene regulatory enhancers, with particular enrichment for brain activity 

[81,88,90]. As our understanding of how non-coding mutations influence gene expression 

and function improves [91], so will the accuracy and specificity of hypotheses about the 

effects of these regions on human-specific phenotypes.

Over the past ten years, genome-wide association studies (GWAS) have identified hundreds 

of variants associated with complex diseases [92,93]. These studies provide insight into the 

functions encoded in specific regions of the genome that can inform evolutionary questions. 

However, the majority of human- and population-specific variants have not been associated 

with functions. The recent integration of large databases of electronic health records (EHRs) 

linked to patient genotypes [94] provides a new approach to this problem. Thousands of 

phenotypes can be algorithmically derived from EHRs and then simultaneously tested for 

association with the loci of interest across thousands of individuals in a phenome-wide 

association study (PheWAS) [95]. As EHR databases grow and sequencing decreases in 

price, the PheWAS approach will enable efficient testing of hypotheses about the effects of 

mutations of evolutionary interest.

Finally, new technologies, including directed stem cell differentiation, massively parallel 

reporter assays [96], and CRISPR gene editing [97], will facilitate faster exploration of the 

mechanisms driving phenotypic associations in models that closely resemble the in vivo 

human context.

Conclusion

Understanding how evolutionary processes produced the human species and how 

developmental programs are encoded in the human genome is of great importance to basic 

and clinical science. The evolutionary history of the human genome is directly relevant to 

our ability to anticipate and treat human disease [1]. In this review, we have highlighted 

several research areas that have potential to significantly deepen our knowledge of human 

genome evolution over the next few years, but our list is not exhaustive. Many other areas, 

including the evolutionary study of human–microbe interactions [98,99] and experimental 

evolution [100], are poised for breakthroughs. We are also eager to see how recent technical 

advances in long-read genome sequencing and single cell analysis will change our 

understanding of evolutionary processes. Ultimately, continued analysis of the human 

genome in an evolutionary framework will further reveal the genetic origins of human-

specific biology and improve our understanding of the etiology of human disease.
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Figure 1. 
Many areas of ongoing research in genomics have not been fully integrated into models of 

genome evolution. In this article, we discuss how study of several emerging topics (bold) in 

an evolutionary context will enrich our understanding of human evolution.
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