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ABSTRACT Greater genetic variability in an individual is protective against recessive disease. However, existing quantifications of
autozygosity, such as runs of homozygosity (ROH), have proved highly sensitive to genotyping density and have yielded inconclusive
results about the relationship of diversity and disease risk. Using genotyping data from three data sets with .43,000 subjects, we
demonstrated that an alternative approach to quantifying genetic variability, the heterozygosity ratio, is a robust measure of diversity
and is positively associated with the nondisease trait height and several disease phenotypes in subjects of European ancestry. The
heterozygosity ratio is the number of heterozygous sites in an individual divided by the number of nonreference homozygous sites and
is strongly affected by the degree of genetic admixture of the population and varies across human populations. Unlike quantifications
of ROH, the heterozygosity ratio is not sensitive to the density of genotyping performed. Our results establish the heterozygosity ratio
as a powerful new statistic for exploring the patterns and phenotypic effects of different levels of genetic variation in populations.
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CHARACTERIZING genetic diversity across individuals
and populations is crucial for reconstructing recent hu-

man evolution and for understanding the genetic basis of
complex diseases (Collins et al. 2003). Genome-level variabil-
ity has most often been defined in terms of quantification of
homozygosity, and themeasuremost commonly used today is
the total length of runs of heterozygosity (ROH) (Gibson et al.
2006). The rationale for assessing ROH is that it quantifies
inbreeding and that extended homozygosity regions increase
the probability of homozygosity of rare deleterious variants
(Szpiech et al. 2013). Most recently, a study found an inverse
association between ROH and height (Joshi et al. 2015).

Additionally, ROH has been associated with several diseases,
especially those with neuropsychological traits (Keller et al.
2012; Gamsiz et al. 2013; Ghani et al. 2013; Gandin et al.
2015). However, the evidence is mixed, and several replica-
tion studies have found no significant associations of ROH
with the same phenotypes (Vine et al. 2009; Sims et al. 2011;
Heron et al. 2014). For example, Lencz et al. (2007) and
Keller et al. (2012) reported that ROH was implicated as a
risk factor for schizophrenia, but Heron et al. (2014) found no
evidence to support this finding. Ghani et al. (2013) found
connection between Alzheimer’s disease and ROH, but no
evidence was found by Sims et al. (2011). This failure of
replication has been blamed on the variability of the ROH
calculation with the genotyping platform used, which is
based on how uniformly the single-nucleotide polymorphism
(SNP) probes on the platform are distributed throughout the
genome (Ferencakovic et al. 2013; Power et al. 2014).

Thegenome-widepatternsofheterozygosityprovidea valu-
able and often overlooked resource for examining human ge-
netic diversity and evolutionary history. The argument for why
genome-wide heterozygosity should associate with disease
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phenotypes is essentially the reverse of the argument given
above. High levels of heterozygosity should correspond to
lower risks of reinforcing rare deleterious variants, leading to
protection from disease. Higher heterozygosity has been asso-
ciated with lower blood pressure and cholesterol (Campbell
et al. 2007; Govindaraju et al. 2009) and lower plasma cortisol
(Zgaga et al. 2013). However, a recent study failed to find any
significant associations of a heterozygosity measure and a
range of endophenotypes with coronary heart disease
(Mukamal et al. 2015).

Several different measures of heterozygosity have been
used. Recently, Wang et al. (2015) defined a genome-wide
measure of heterozygosity as the ratio of the number of het-
erozygous SNPs divided by the number of nonreference ho-
mozygous SNPs. We refer to this normalized measure of
heterozygosity as the heterozygosity ratio. The normalization
by the number of nonreference SNPs is intended to make this
measure consistent across genome regions and between gen-
otyping platforms. Guo et al. (2014b) presented an argu-
ment based on Hardy–Weinberg equilibrium (HWE) that the

heterozygosity ratio should have a numerical value of 2, mean-
ing that on average there should be twice the amount of het-
erozygous SNPs compared to nonreference homozygous SNPs.
This argument is based on the assumptions of HWE, including
random mating, that are often not true for real populations. A
study has shown that the heterozygosity ratio is highly popu-
lation dependent (Wang et al. 2015). The same study, based on
1000 Genomes phase 2 data, showed that African populations
had the most genetically diverse population (heterozygosity
ratio �2.0), East Asian populations had the lowest diversity
(heterozygosity ratio�1.4), and American (heterozygosity ra-
tio �1.7) and European (heterozygosity ratio �1.6) popula-
tions were intermediate (Wang et al. 2015). In addition, it was
observed that unlike the transition/transversion ratio, the het-
erozygosity ratio is not dependent on genomic location, mean-
ing that the heterozygosity ratios computed from SNPs from
any particular regions (for example, the exome, intergenic
regions, etc.) of the genome or from a sampling of SNPs [such
as genome-wide association study (GWAS) data] remain equal
(Wang et al. 2015). The heterozygosity ratio has been

Table 1 Data set descriptions

Data set Population
Subpopulation
abbreviation No. of subjects

Median heterozygosity
ratio

Heterozygosity
ratio SD

1000G AFR ACB 96 2.00 0.04
ASW 61 2.04 0.10
ESN 99 1.92 0.03
GWD 113 1.94 0.07
LWK 99 1.96 0.02
MSL 85 1.95 0.02
YRI 108 1.92 0.02

AMR CLM 94 1.63 0.11
MXL 64 1.55 0.13
PEL 85 1.31 0.18
PUR 104 1.70 0.09

EUR CEU 93 1.55 0.02
FIN 103 1.52 0.02
GBR 105 1.54 0.02
IBS 104 1.56 0.03
TSI 99 1.56 0.02

EAS CDX 99 1.31 0.04
CHB 99 1.31 0.02
CHS 91 1.31 0.02
JPT 107 1.31 0.03
KHV 107 1.33 0.02

SAS BEB 86 1.57 0.03
GIH 103 1.55 0.03
ITU 102 1.55 0.08
PJL 96 1.57 0.09
STU 102 1.54 0.08

BioVU AFR NA 4,751 1.73 0.13
AMR NA 1,233 1.63 0.19
EUR NA 30,851 1.55 0.07
ASN NA 426 1.36 0.05
AFR-EUR NA 412 2.16 0.51

ACB, African Caribbean in Barbados; AFR, African; AFR-EUR, African-European; AMR, American; ASN, Asian; ASW, African ancestry in Southwest United States; BEB, Bengali
in Bangladesh; CDX, Chinese Dai in Xishuangbanna, China; CEU, Utah residents with Northern and Western European ancestry; CHB, Han Chinese in Bejing, China; CHS,
Southern Han Chinese, China; CLM, Colombian in Medellin, Colombia; EAS, East Asian; ESN, Esan in Nigeria; EUR, European; FIN, Finnish in Finland; GBR, British in England
and Scotland; GIH, Gujarati Indian in Houston; GWD, Gambian in Western Division, The Gambia; IBS, Iberian populations in Spain; ITU, Indian Telugu in the United Kingdom;
JPT, Japanese in Tokyo; KHV, Kinh in Ho Chi Minh City, Vietnam; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone; MXL, Mexican Ancestry in Los Angeles; PEL,
Peruvian in Lima, Peru; PJL, Punjabi in Lahore, Pakistan; PUR, Puerto Rican in Puerto Rico; SAS, South Asian; STU, Sri Lankan Tamil in the United Kingdom; TSI, Toscani in Italy;
and YRI, Yoruba in Ibadan, Nigeria.
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proposed as a quality control parameter for SNP data (Guo
et al. 2014b,c) due to its stability within a race.

In this study, we report how the heterozygosity ratio varies
across a broader range of populations, including the special
population of first-generation admixture between European
andAfricanancestryparents.Weshowthat theheterozygosity
ratio is positively correlated with height, a highly polygenic
trait. We also carry out a phenome-wide association study
(PheWAS) of the heterozygosity ratio and show that hetero-
zygosity is protective against several pathogenic conditions.

Materials and Methods

Data set

To examine the population diversity of the heterozygosity
ratio, we conducted thorough genetic analyses, using two
independent data sets. The first data set is the SNP data
released from the 1000 Genomes Project (1000G) phase
3 (Durbin et al. 2010) in May 2013, which contains 2504 in-
dividuals and 13,424,776 SNPs from 5 major geographic
populations and 26 subpopulations (Table 1). We refer to
this as the 1000G data set.

The second data set is a genotyping data set from the
Vanderbilt University Medical Center’s electronic medical re-
cord and biobank, BioVU (Mosley et al. 2014), which con-
tains 37,673 subjects with large-scale genotyping data
available. We refer to the SNP data from BioVU as the BioVU
data set. The BioVU data set was genotyped using the Illu-
mina Human Exome Beadchip 12v1, which contains a total of
247,901 features (247,733 SNPs). The BioVU data primarily
consist of Caucasian subjects (N=30,851), but include Asian
(N = 426), Hispanic (N = 1233), and African ancestry sub-
jects (N= 4751). Important for our analysis, our BioVU data
set also includes 412 individuals with nearly equal amounts
of European and African ancestry that are likely a first-
generation admixture (Table 1).

The BioVU data set was processed by Vanderbilt Technol-
ogies for Advanced Genomics Analysis and Research Design.
The entire protocol for quality control and processing of the
Exome chip data has beenpublished (Guo et al.2014a). Briefly,

quality control tests were conducted in Illumina Genome Stu-
dio and in PLINK (Purcell et al. 2007). In Genome Studio, we
filtered all subjects by a 98% call rate and SNPs by a 95% call
rate, andwe conductedmanual reclustering based onmultiple
parameters, such as GenTrain score and cluster separation. All
SNPs on the exome chipwere converted to theHG19 reference
genome forward strand. In PLINK, we quality controlled the
BioVU data set for gender mismatches, relatedness, HWE, het-
erozygosity rate, andMendelian error as stated in our protocol
(Guo et al. 2014a). In addition to BioVU Exome chip data, a
second Exome chip data set of 10,906 (case N= 5852, control
N = 5054) Chinese subjects from the Shanghai Breast Cancer
Genetic Study (SBCGS) (Cai et al. 2014) was used to test the
association between heterozygosity ratio and height.

Principle component analysis

Clinical and demographic information, such as race, is subject
to self-reporting and data recording errors. Often, simple race
labels do not adequately describe complex situations, such as
people of mixed ancestry. To quantify ancestry in the BioVU
data set, we utilized principle component analysis (PCA) on
the 2945 ancestry informative markers (AIMs) included on
the Exome chip, and we distributed�1 marker per megabase
across the autosomes and chromosome X. These markers
were selected because they demonstrated strong differentia-
tion power between African and European ancestry samples
sequenced in the 1000 Genomes Project. We performed PCA
on these AIM SNPs, using EIGENSTRAT (Price et al. 2006). A
subject’s genetic ancestry, or race, can be determined by the
location on the scatter plot drawn from the first and second
principle components of all subjects (Figure 1). The geneti-
cally determined ancestry was then used in our analysis.

Heterozygosity ratio and structure analysis

The heterozygosity ratio for each subjectwas computed as the
ratio between the number of genotyped heterozygous SNPs
and the number of nonreference homozygous SNPs based on
the GRCh37 reference sequence. Structure analyses were
carried out using Structure 2.3.4 (Hubisz et al. 2009). ROH
measures for 1000G data were computed using PLINK. The

Figure 1 (A) Scatter plot of PC1 and
PC2 from 1000G data. (B) Scatter plot
of PC1 and PC2 from of the BioVU data
set. Boundaries were chosen by eye to de-
fine subpopulations for further analysis.
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ROH for BioVU data were not computed due to the lack of
density in SNPs of the Illumina Exome chip.

Genetic admixture for each population was com-
puted using the Shannon entropy, using the formula
admixture ¼ PK

i¼1ðpi logk piÞ; where K is the number of
ancestry groups, and pi is the ancestry proportion of member-
ship. For any population, the sum

PK
i¼1ðpiÞ should be equal

to 1.

Allele frequency ratio

Based onHardy–Weinberg equilibrium,we hypothesized that
the distribution of allele frequency in a population can be
used as an estimate of the median heterozygosity ratio in that
population. To test this, we computed an estimated hetero-
zygosity ratio defined as

P
2pð12 pÞ=P p2; where p is the

allele frequency of the nonreference allele and the sum is

taken over all genotyped SNPs. The numerator is the sum
of the probability of being heterozygous at each site, and
the denominator is the sum of the probability of being a non-
reference homozygote. Note that this estimate is computed
over a population, and the actual heterozygosity ratio is com-
puted on each subject individually.

Height association analysis and genetic score

We evaluated the association between the heterozygosity
ratio and height in the BioVU exome chip data set, using a
linear regression model in R v3.2.0, with height as the out-
come and heterozygosity ratio as the predictor, adjusting for
gender and a genetic score (GS) of height. The first five
principal components were also included as covariates to
correct for potential effects of population stratification within
each population. In regressions including all subjects without

Figure 2 (A) Heterozygosity ratio distributions for the 5 major populations in 1000G. (B) Heterozygosity ratio distributions for the 26 subpopulations in
1000G. (C) Heterozygosity ratio distribution for the 4 major populations plus the first-generation admixed population (AFR-EUR) in BioVU.
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stratification by listed race, the first five principle components
were also included as covariates. SNPs associated with vari-
ation in height were identified from the U.S. National Human
Genome Resource Institute (NHGRI) Catalog of Published
Genome-Wide Association Studies in April 2014 (Hindorff
et al. 2009) and were used to define a height GS. Only SNPs
associated with height in a population of European ancestry
were selected for this study. We selected independent SNPs,
defined as pairwise linkage disequilibrium (LD) r2 , 0.1
based on the International HapMap Project phase 3 data.
For any two SNPs with an r2 $ 0.1, the SNP with the lower
P-value for association with height was selected. In total,
68 SNPs were selected for analysis from the exome chip (Sup-
plemental Material, Table S1). An externally weighted GS
was computed using the formula GRS ¼ PN

i¼1WiSNPi;where
N is the number of SNPs associated with height and available
in the BioVU Exome chip data, SNPi is the genotype of the
effect allele (coded as 0, 1, 2) of the ith SNP, and Wi is the
weight of the ith SNP. Two additional GSs were computed as
a sensitivity analysis: an unweighted GS (uwGS) and an in-
ternal effect size weighted GS (iwGS). For the externally
weighted height GS (ewGS), Wi is the reported effect size
(converted to the same unit) reported by published litera-
ture. For the uwGS, Wi = 1; for iwGS, Wi is the effect de-
termined from BioVU data using a linear regression model
with height as the outcome and SNP as the predictor andwith
adjustments made for gender and PC1–PC5. The GS analyses
were limited to Caucasian subjects in BioVU, since the ma-
jority of the subjects are Caucasian and the majority of the
reported height SNPs were also from Caucasian studies.

PheWAS analysis

BioVU has the advantage of containing electronic medical
records from theVanderbiltMedicalCenter. These records can
be used in a PheWAS to test the relation of a specific genetic
feature to the range of phenotypes captured by the medical
record (Carroll et al. 2014). We used a PheWAS to test the
relationship of one genetic predictor to multiple phenotypes
(Denny et al. 2010). International Classification of Disease
version 9 (ICD.9) codes and the dates on which they were

coded were downloaded for each individual in our data set.
These ICD.9 codes were aggregated into PheWAS codes, us-
ing the PheWAS package in R 3.2.0 (Carroll et al. 2014). An
individual who had two or more ICD.9 codes on different
days that contribute to the same PheWAS code was consid-
ered a case for that PheWAS code. Individuals who never had
an occurrence of an ICD.9 code within a PheWAS code were
considered controls for that group. Individuals who had only
one occurrence of any ICD.9 code within a PheWAS group
were excluded from analysis. Individuals who did not have
an ICD.9 code within a PheWAS category, but who had re-
lated codes, were also exclusions for a category. We utilized
PheWAS code groups that have been previously defined
(Carroll et al. 2014). Associations were performed using lo-
gistic regression with the individual’s heterozygosity ratio as
the predictor. PheWAS code statuses were used as the out-
comes in all regressions. Gender and the median age of
recorded ICD.9 codes were used as covariates. Subjects were
classified as European or African ancestry based on principle
components as described above and were tested separately.
Since phenotypes captured by ICD.9 codes are highly corre-
lated and therefore not independent, Bonferroni correction
for multiple testing is overly conservative. To include the cor-
relation structure of the phenotypes, we use the simple M
method for multiple-testing correction (Gao et al. 2010).

Data availability

The 1000G data set used in this study is freely downloadable
from http://www.1000genomes.org/. The heterozygosity ra-
tios, relevant phenotype data from the BioVU data sets, are
provided as supplementary material. R script for analyzing
the height association data is also provided as supplemental
files. The script used for PheWAS analysis can be found at
https://medschool.vanderbilt.edu/cpm/center-precision-
medicine-blog/phewas-r-package.

Results

Wefirst computed the heterozygosity ratio using the 1000Ge-
nomes data. As expected, we found that the heterozygosity

Figure 3 (A) Scatter plot and correlation
for the admixture measure vs. the stan-
dard deviation of the heterozygosity ra-
tio based on the 26 subpopulations in
1000G. (B) Scatter plot and correlation
for admixture vs. heterozygosity based
on the 5 populations in BioVU.

Heterozygosity Ratio Association with Height 897

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.189936/-/DC1/TableS1.xlsx
http://www.1000genomes.org/
https://medschool.vanderbilt.edu/cpm/center-precision-medicine-blog/phewas-r-package
https://medschool.vanderbilt.edu/cpm/center-precision-medicine-blog/phewas-r-package


ratio was strongly associated with human ancestry. Africans
had the highest heterozygosity ratio with a median of 1.95,
followed by Americans, South Asians, and Europeans with
median values of 1.62, 1.56, and 1.55, respectively. East
Asians had the lowest heterozygosity ratio with a median of
1.31 (Figure 2, A and B). South Asian heterozygosity ratios
were more similar to the European and American values than
were East Asian values. Note that only the African population
had a value close to the theoretical value of 2. In the 1000G
project, five subpopulations of South Asian ancestry were
available, two of which were Indian (Gujarati Indian from
Houston and Indian Telugu from the United Kingdom). It
has been shown that the Indian and European populations
share common ancestry (2008) (Auton et al. 2009; Metspalu
et al. 2011). Our analysis results based on the heterozygosity
ratio suggest that the South Asians [Gujarati Indian from
Houston (GIH), Punjabi in Lahore, Pakistan (PJL), Bengali
in Bangladesh (BEB), Sri Lankan Tamil in the United Kingdon
(STU), and Indian Telugu in the United Kingdom (ITU)]
selected for the 1000G project have statistical genome char-
acteristics that are more similar to Europeans and Americans
than those of their East Asian neighbors.

Similar patterns for the heterozygosity ratio distribution
wereobserved for theBioVUdata compared to the1000Gdata
(Figure 2C). Subjects of primarily African ancestry (defined
by PCA as described in Materials and Methods) had the high-
est (1.73) heterozygosity ratio, and subjects of Asian ancestry
had the lowest heterozygosity ratio (1.36) with American
(1.63) and European ancestry (1.55) in the middle. One in-
teresting phenomenon is that the assumed first-generation
admixture group between African and European ancestry
had the highest heterozygosity ratio at 2.16. This high het-
erozygosity ratio should be expected for the first generation
of admixture between two previously separated populations.
The SNPs that are highly different in frequency between the
African and European populations (those that we use as
AIMs) will result in a higher number of heterozygous SNPs
and a lower number of nonreference homozygous SNPs in
the first-generation admixture offspring, thereby increasing
the ratio.

The African ancestry subjects had the highest heterozygos-
ity ratio in both the 1000G and the BioVU data except for the
BioVU first-generation admixture group. This is caused by the
higher number of available alternative alleles existing in
themorediverseAfricanpopulation. To assess this,we counted
thenumberofpossible alternative alleles in eachpopulation for
both the 1000G and BioVU data sets. After normalizing to
sample size by population, Africans had the highest number
of available alternative alleles, followed closely by the first-
generation admixture group from BioVU (Figure S1). Euro-
peans had the lowest number of available alternative alleles,
followed by East Asians, South Asians, and Americans.

The 1000G American populations showed the highest var-
iation (SD = 0.13) in heterozygosity ratio compared to other
major populations (Table 1). Within American subjects, four
subpopulations [Mexican ancestry in Los Angeles (MXL),
Puerto Rican in Puerto Rico (PUR), Colombian in Medellin,
Colombia (CLM), and Peruvian in Lima, Peru (PEL)] were
included in 1000 Genomes. There were distinct differences
within the four American subpopulations (Figure 1B). Peru-
vians had the lowest heterozygosity ratio (1.31), which is on
the same level as the East Asian populations. The American
populations in both 1000 Genomes and BioVU had large var-
iation in the heterozygosity ratio (Figure 1, A and B). Struc-
ture analysis (Figure S2) showed that the American group has
more ancestry groups than the other continental populations.
We hypothesized that there is an association between the
amount of genetic admixture of a population and the variabil-
ity across individuals in the heterozygosity ratio. To test our
hypothesis, we quantified the genetic admixture for each pop-
ulation based on Shannon entropy. The admixture measure
ranges from 0 to 1, where 0 means that a single ancestry
group is present, and 1 means all K ancestry groups are
equally present. The scatter plot between the 26 subpopula-
tions’ genetic admixture and the standard deviation of the
heterozygosity ratio shows a strong positive correlation
(1000G Spearman r = 0.712, BioVU Spearman r = 0.818)
(Figure 3, A and B). Correlation analysis for the heterozygos-
ity ratio itself (not the standard deviation) vs. admixture
shows no significant correlation (Figure S3).

Figure 4 (A) Scatter plot of heterozy-
gosity ratio vs. PC1 in 1000G. (B) Scatter
plot of heterozygosity ratio vs. PC1 in
BioVU.
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The heterozygosity ratio shows a very strong nonlinear
relationship with the first principle component in both the
1000Genomes and the BioVU data sets (Figure 4). In both sets,
the first principle component separates European ancestry (to
the negative side) from African ancestry (to the positive side).
The heterozygosity ratio shows a strong inverted V patternwith
PCA1. The peak heterozygosity value is in subjects with nearly
equal European and African ancestry, and the heterozygosity
ratio decreases linearly (with different slopes) as subjects ex-
tend to either extreme of pure African or European ancestry.

We hypothesized that the median heterozygosity ratio
within a population could be estimated from the allele fre-
quencies in that population based on predicted numbers of

heterozygote and nonreference homozygote sites (see Mate-
rials and Methods for details). To test this, we computed the
predicted ratio from the allele frequencies for the 1000G sub-
population data (Figure 5A). As expected, a high correlation
was observed between the predicted ratios and the median
measured heterozygosity ratios (Spearman r= 0.976). How-
ever, the predicted ratios based on allele frequencies were con-
sistently higher than themedianmeasured heterozygosity ratio.
When comparing between the 1000G and BioVU exome chip
data sets for comparable population groups, we observed large
differences between the predicted ratios from allele frequencies
(Figure 5, B and C), although the trends across population
groups were similar between the two data sets.

Figure 5 (A) Scatter plot between median mea-
sured heterozygosity ratio (x-axis) and the predicted
median value based on allele frequencies in that
population. (B) Predicted median heterozygosity ra-
tios from the 1000G data set for major popula-
tions. (C) Predicted median heterozygosity ratios
from the BioVU Exome chip data set for major pop-
ulations. There is large difference in magnitude be-
tween the predicted ratios for the comparable
populations computed in the two different data
sets.
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An alternative measure of genome-level variability is the
ROHmeasure. Large values of ROH indicate a lack of genetic
variability in the individual. Broadly, one would expect that
ROH and the heterozygosity ratio should have an inverse
relationship. We tested this by computing the ROH for the
1000 Genomes data to compare against the heterozygosity
ratio values. The BioVU data were not used in this test since
only Exome chip data were available for that group and we
found that SNP distribution across the chromosomes on that
chip was not dense enough for a reliable ROH calculation.
Based on our previous study, which proved that the hetero-
zygosity ratio is independent of genomic regions (Wang et al.
2015), we hypothesized that the heterozygosity ratio is
independent of SNP density in contrast to ROH, which is
highly dependent on SNP density. The 1000G data con-
tain �13,424,000 SNPs, whereas the BioVU data contain
�240,000 SNPs, a 56-fold difference. The ROH computed
from 1000G data are predicted to be much smaller due to
the higher SNP density. On the other hand, the heterozygos-
ity ratio should not be affected much, since its definition as a
ratio of two measures allows it to be estimated from a sam-
pling of SNPs. To test our hypothesis, we examined the het-
erozygosity ratio and ROH for 22 HapMap samples [9 African
(AFR), 4 American (AMR), 4 East Asian (EAS), and 5 Euro-
pean (EUR)] measured from five different genotyping sour-
ces (1000G, Exome chip, Metabo Chip, OMNI1, and OMNI5).
We computed the intraclass correlation (ICC) for the hetero-
zygosity ratio and the ROH computed from all five sources
(Table S2). The heterozygosity ratio achieved an ICC of 0.80
and the ROH had an ICC of only 0.17. The heterozygosity
ratio is clearly more consistently computed than was ROH
across these highly diverse genotyping platforms. Using the
two SNP sources (1000G vs. Exome chip) with extreme SNP
density difference as an example, there is a strong linear re-
lationship for the heterozygosity ratio, but no linear rela-
tionship for ROH (Figure 6). An interesting phenomenon
observed was that AFR subjects form their own group for
both the heterozygosity ratio and ROH. For the heterozygos-
ity ratio, there is a shift of20.4 to20.5 for AFR subjects. We
suspect this is caused by the density of the SNPs and the fact
that the selection of the SNPs on the Exome chip is more
focused on rare SNPs, which will affect the ROH measure
in people of African and European ancestry differently.

Additionally, using 1000G data as an example, we show
that the heterozygosity ratio is highly negatively correlated
with ROH in all subpopulations (Figure 7). To further dem-
onstrate that the heterozygosity ratio is a more stable mea-
sure than ROHwe conducted a subsampling test by randomly
selecting 50,000 SNPs 50 times from the same aforemen-
tioned 22 HapMap subjects that were genotyped on Illumi-
na’s Exome chip. Using these SNPs, we compared the
heterozygosity ratio and ROH computed from these 50,000
SNPs to the heterozygosity ratio and ROH computed using all
SNPs and found that the subsampled heterozygosity ratio
was much more close to the initial value than was ROH
(Figure S4).

Lower genetic variabilitymay have deleterious effects. As a
simple test of this hypothesis,weconsideredheightas aneasily
quantified highly polygenic trait. Height has been negatively
associatedwith higher ROH(McQuillan et al.2012; Joshi et al.
2015). Based on this, we predicted that height would increase
with a greater heterozygosity ratio. Using the clinical data
within BioVU, we restricted our analysis to adults, determin-
ing the height for each individual with birth dates before
1980. Using linear regression of height with the heterozygos-
ity ratio and adjusting for gender and PCs, we found in sub-
jects of European ancestry a significant positive association of
height with heterozygosity ratio, with an increase of 5.43 cm
in height per unit increase of heterozygosity ratio (P=1.183
1028) (Table 2). Since the heterozygosity ratio is calculated
using all available SNP data, it contains specific SNPs that
have been associated with height. To test whether the signif-
icant association of the heterozygosity ratio is due to the
known height GWAS hits, we constructed an ewGS based
on published SNP associations (see Materials and Methods

Figure 6 (A) Scatter plot of heterozygosity ratio for 22 HapMap samples
measured from both Exome chip and 1000G genotyping data. (B) Scatter
plot of ROH for the same 22 HapMap samples measured from Exome
chip and 1000G data.
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for details). After adjusting for the height ewGS (weighted
and unweighted), the heterozygosity ratio remained posi-
tively significantly associated with height (P = 1.37 3
1028), indicating that the heterozygosity ratio contributes
new significant predictive power beyond what is captured
by known height SNPs. After stratifying European subjects
by gender, significant positive associations remained. The effect
is stronger in EUR female subjects (P = 1.16 3 1026) than in
male subjects (P= 0.002). The sensitivity analyses using un-
weighted and internally weighted GS also reached the same
conclusion (Table S3). In the African population of the BioVU
Exome chip data set and the Asian female population in the
SBCGS data sets, no significant association between hetero-
zygosity ratio and height was observed.

A PheWAS uses the ICD.9 billing codes contained in each
individual’s electronic medical record as a proxy for the med-
ically relevant phenotypes of that patient. Similar ICD.9
codes are grouped together into phenotype categories
(Denny et al. 2010). In a PheWAS analysis on the BioVU data
set in subjects of European ancestry adjusting for gender and
PCs, the heterozygosity ratio showed a significant association
in four phenotypes: disturbances of amino acid transport,
abscess of oral soft tissue, renal colic, and open wounds of
extremities (significance determined with simple-m adjust-
ment for multiple-phenotype testing). In the smaller group of
African ancestry subjects, one phenotype was significantly
associated with the heterozygosity ratio: iron deficiency ane-
mia. Data for these results are given in Table S1. All five

Figure 7 Scatter plots of 26 1000G
subpopulations between the heterozy-
gosity ratio and ROH.
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significant effects were protective, with individuals of higher
heterozygosity having fewer cases of the disease phenotype.
This uniform protective effect against deleterious phenotypes
is consistent with the hypothesis that higher heterozygosity is
protective. The strongest association was with disturbances
of amino acid transport (P = 2.00 3 1025) (Table 3).

Discussion

In this study, we thoroughly examined the intrinsic relation-
ship of heterozygosity ratio across ethnic groups.Using1000G
data, we were able to compare 26 subpopulations and ob-
served different levels of variation for the heterozygosity ratio
among the subpopulations within a major ancestry. The high-
est heterozygosity ratio displayed by subjects of African an-
cestry can be explained by the high level of genetic diversity in
Africans (Campbell and Tishkoff 2008). Using BioVU’s Exome
chip data, we showed that the first-generation admixture
group between African and European ancestry had an ele-
vated heterozygosity ratio in comparison to their parental
populations. We hypothesize that the different homozygous
loci between subjects of European and African ancestry (the
parents of this population) create additional heterozygous
loci in these subjects, pushing the heterozygosity ratio up-
ward. Carrying this concept over to the global 1000G data
set, we showed that the variation in the heterozygosity ratio
is correlated with the levels of genetic admixture of each
subpopulation.

The heterozygosity ratio is defined as the number of het-
erozygous sites divided by the number of homozygous non-
reference sites. The numerator of the ratiowill not be changed
by the choice of the reference sequence. The denominator
will change depending on the reference. Individuals from

populations genetically farther from the reference sequence
will tend to have more nonreference homozygous sites and
thus smaller ratios.However, thatpotentialbiasdue thechoice
of the reference sequence (currently of European descent) is
not strongly affecting the global population data (Figure 2).
Europeans do not have the largest median heterozygosity
ratio. The patterns that are present, with highest heterozy-
gosity ratios in the recently admixed populations followed
closely by the highly diverse African population, are clearly
driven by population differences in the numerator of the ra-
tio, the number of heterozygous sites.

Our result in Figure 4 shows that the predicted median
heterozygosity ratio, based on the principles of Hardy–Weinberg
equilibrium, from allele frequencies in the population is
highly correlated with the median measured heterozygosity
ratio within a data set when values across several populations
were compared. However, this approach can predict only the
median value within a population and does not tell us any-
thing about the heterozygosity ratio of a particular individual
within that population.

An ROH is defined as a genomic region where no hetero-
zygous loci are observed, and this measure has been the
subject of interest in genetic association studies (Vine et al.
2009; Sims et al. 2011; Keller et al. 2012; Gamsiz et al. 2013;
Ghani et al. 2013; Heron et al. 2014; Gandin et al. 2015; Joshi
et al. 2015). Here, we demonstrated that ROH is an unstable
measurement and is highly dependent on the density of the
SNP measurements. More densely measured SNP data natu-
rally tend to produce smaller segments of ROH. This impre-
cision of ROH measurement probably has contributed to the
lack of success in verification of some of the association find-
ings for ROH (Vine et al. 2009; Sims et al. 2011; Heron et al.
2014). In contrast, we showed that the heterozygosity ratio is
a much more reliable measurement because it does not
greatly vary by genotyped SNP density. The heterozygosity
ratio is a global measure of genetic variation that can be
calculated reliably on a single individual. In contrast, a mea-
sure such as principle components represents how an indi-
vidual relates to a larger population, without containing any
direct information about the level of genetic variation in the
individual. Ideally, the ROH measure should be closely and
inversely related to the heterozygosity ratio. The ROH of an
individual is mainly affected by very recent inbreeding or
population bottlenecks, leading to increased homozygosity.
As we have shown in this article, the heterozygosity ratio is
strongly affected by the overall genetic variability of the

Table 2 Associations between height and HR

Subjects Predictor Effect SE P

EUR all (N = 19,545) HR 5.4289 0.9515 1.18 3 1028

ewGS + HR 5.2940 0.9502 1.37 3 1028

EUR male (N = 8,827) HR 4.5482 1.4694 0.0020
EUR female (N = 10,718) HR 6.0522 1.2440 1.16 3 1026

AFR all (N = 1,964) HR 3.1035 2.9578 0.29
AFR male (N = 747) HR 7.1570 4.8740 0.14
AFR female (N = 1,217) HR 20.3538 3.7132 0.92
CHN female (N = 7,629) HR 20.2651 1.0601 0.80

Subjects used in the models were with date of birth .1980. In all models, gender
and PC1–PC5 were also adjusted for models that used all subjects. AFR, African;
CHN, Chinese; EUR, European; HR, heterozygosity ratio.

Table 3 Significant phenome-wide association study results for the heterozygosity ratio

Phenotype Population Cases Controls ICD.9 codes b SE P

Disturbances of amino acid transport EUR 48 22,276 270, 270.1, 270.2, 270.3 26.15 1.4 1.90 3 1025

Cellulitis and abscess of oral soft tissues EUR 29 22,096 527.3, 528.3 26.82 1.8 0.0001
Renal colic EUR 27 21,962 788 26.7 1.8 0.0002
Open wounds of extremities EUR 599 20,877 880, 881, 884, 890, 891, 894, 905.8, 906.1 22.61 0.7 0.0002
Iron deficiency anemias AFR 284 1,454 280 22.54 0.7 0.0002

AFR, Africans; EUR, Europeans; SE, standard error.
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individual’s pool of ancestors. However, ROH suffers from a
strong sensitivity to genotyping density, while the heterozy-
gosity ratio can be consistently calculated over several differ-
ent choices of SNPs (Table S2).

Our findings show that the heterozygosity ratio is positively
associated with height in subjects with European ancestry. The
association is strongest within European ancestry female
subjects. We speculate that the null association observed for
Asian female subjects was caused by the inherent smaller
standard deviation in height and heterozygosity ratio in this
population, and the null association observed in African
subjects was due to small sample size. Through PheWAS
analysis, we also observed associations between several dis-
ease phenotypes and heterozygosity ratios. Height is a classic
example of a polygenic trait, with large numbers of genes
contributing to the eventual adult height. As a global genomic
measurement, the heterozygosity ratio has the potential to
represent highly polygenic traits well. One simple example of
the strength of this method is to consider how much height
difference is explained by 1 SD difference in the heterozygos-
ity ratio for a population, compared to a SD change in the
height GS. In our complete European ancestry data set, the SD
of the heterozygosity ratio was 0.07, giving a change of
(5.083 3 0.07 = 0.36 cm) based on the model in Table 2.
The SD of the height ewGS was 1.77, giving a change of
(0.108 3 1.77 = 0.19 cm). Thus, the heterozygosity ratio
explains more of the range of height than did the ewGS.

Other polygenic traits may also tend to be associated with
the heterozygosity ratio, as we have shown for height. Our
analysis shows that the genomic heterozygosity ratio carries
useful information that is lost in genetic scores based on a
limited selection of significant SNPs and may help explain
some of the questions still remaining concerning heritability,
particularly missing heritability. Given the simplicity and the
robustness of the computation of heterozygosity ratio, it
should not be overlooked in future genetic studies.
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Structure analysis 

 Using Structure[1], we performed a population structure analysis.  Before applying Structure 

analysis, the number of ancestry population (K) must be chosen. For 1000G data, we conducted our 

primary analysis with Structure using K = 5 to 9, with K=5 as our primary analysis (Figure S2). This 

value corresponds to the five major populations defined in 1000 Genomes. The seven African 

subpopulations are all dominated by a single ancestry population (labeled 1-pink). The ACB (Caribbean) 

and ASW subpopulations (US African Americans) had two ancestry populations (1-pink, 2-green) 

consistent with their admixture with European ancestry.   

 The structure analysis results for the American population showed the most complicated ancestry 

information among all populations.  All four subpopulations in the American group had three to four 

ancestry populations (1-pink, 2-green, 4-yellow, 5-blue). All five of the European subpopulations were 

dominated by a single ancestry group (labeled 2-green), with minor influences from the ancestry 

dominant in the South Asian population (4-yellow). For East Asians, all five subpopulations were 

dominated by a single ancestry group (3-orange). For South Asians, all five subpopulations were 

dominated by a single ancestry group (4-yellow), and all of them showed some influence from European 

ancestry (2 green).  

 For BioVU data, we conducted Structure analysis using K=3, assuming three ancestral 

populations correspond to European, African and Asian ancestry. As expected, subjects of European 

ancestry were dominated by a single ancestral population (labeled 2-green), while African ancestry 

subjects were dominated by a single ancestry (1-pink), with some European ancestry (2-green). The small 

Asian subject group was dominated by a single ancestry (3-orange), while Americans were a mixture of 

European (2-green) and Asian (3-orange) ancestry. The small group of subjects with presumed first 

generation admixture had nearly equal levels of African and European ancestry.  



File S2. Includes height analysis data as an .R script and relevant input file in .xlsx format. (.zip, 772 KB) 
 
www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.189936/-/DC1/FileS2.zip 
 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.189936/-/DC1/FileS2.zip

	893.pdf
	893_SI.pdf
	FigureS1.pdf
	FigureS2.pdf
	FigureS3.pdf
	FigureS4.pdf
	TableS1.pdf
	TableS2.pdf
	TableS3.pdf
	FileS1.pdf
	FileS2.pdf


