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Genomic maps of local ancestry identify ancestry transitions – points on a chromosome where recent 
recombination events in admixed individuals have joined two different ancestral haplotypes. These events bring 
together alleles that evolved within separate continential populations, providing a unique opportunity to 
evaluate the joint effect of these alleles on health outcomes.  In this work, we evaluate the impact of genetic 
variants in the context of nearby local ancestry transitions within a sample of nearly 10,000 adults of African 
ancestry with traits derived from electronic health records.  Genetic data was located using the Metabochip, 
and used to derive local ancestry.  We develop a model that captures the effect of both single variants and local 
ancestry, and use it to identify examples where local ancestry transitions significantly interact with nearby 
variants to influence metabolic traits. In our most compelling example, we find that the minor allele of 
rs16890640 occuring on a European background with a downstream local ancestry transition to African 
ancestry results in significantly lower mean corpuscular hemoglobin and volume. This finding represents a new 
way of discovering genetic interactions, and is supported by molecular data that suggest changes to local 
ancestry may impact local chromatin looping.   

1. Introduction

Admixture occurs due to recent mixing of ancestral human populations, and admixed populations 
represent a unique opportunity to investigate epistasis, or genetic interactions, between alleles with 
different histories. Prior studies have shown that variants common to any one ancestral population 
(minor allele frequency/MAF > 5%) are typically shared between all populations,1 though the 
frequency at which they occur can vary substantially among different ancestral groups.2 Lower 
frequency variants (MAF < 5%) are much more likely to be population specific, and are more likely 
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to occur in more ancestral populations. Both recombination rates and the sites of recombination also 
vary considerably by population; for example, there are more than 2,000 recombination hotspots 
observed in populations of West African descent, but not European descent populations.3 
Differences in both allele frequency and recombination hotspots between the ancestral populations 
of an admixed group result in combinations of variants that may have not been observed (or occurred 
very rarely) in either continental population separately. Given the extensive admixture between 
human populations over the past several hundred years, many allelic combinations on admixed 
chromosomes have had limited time to undergo purifying selection and thus may be more likely to 
influence human traits.  

It remains unclear what role epistasis, or genetic interactions, plays in the architecture of human 
traits.  However studies of model organisms suggest that genetic variants likely do not act in 
isolation, and that the genetic background of a variant may influence its phenotypic effect.  For 
example, it is well-established that when human-derived disease-associated variants are introduced 
into mice, the phenotypic consequences vary between strains despite consistent environmental 
factors.4  This could occur through a variety of mechanisms: strains may carry compensatory 
mutations that mitigate the effect of the variant, or a given threshold of genetic predisposition (i.e., 
burden) may be required for phenotypic effects to manifest.  Within a natural population, genetic 
variants that mask the effect of a genomic region may permit potentially deleterious variants to arise. 
For example, genetic variants that are associated with decreased expression of a transcript can 
accumulate recently derived rare variants on the same haplotype with limited phenotypic impact.5,6 
Functional haplotypes of regulatory variants also form in which variants either cancel out one 
another’s effects, or in which they both amplify their influence on a phenotype in the same 
direction.7 

In this study, we explore admixed chromosomes for new combinations of  variants with observable 
epistasis.  As different ancestral chromosomes recombine, disease-associated alleles are placed onto 
new genetic backgrounds – here we specifically focus on recombination events in close physical 
distance to variants with established trait associations. Within a dataset of nearly 10,000 adults of 
African ancestry (an admixed group of European and African ancestral populations), we 
investigated whether transitions in local ancestry modify the effect of variants on electronic health 
record (EHR) derived phenotypes. We used genetic data from the Illumina Metabochip, a custom 
genotyping platform with dense genotyping of previously disease-associated genomic regions, to 
identify chromosomes with a transition in local ancestry. We then used linear regression models to 
evaluate the impact of local ancestry transitions on SNP-trait associations reported for African-
descent populations in the NHGRI-EBI GWAS Catalog.8   

    
2.  Methods 

2.1.  Subjects and Genotyping 

All samples used in this analysis were part of the Epidemiologic Architecture for Genes Linked to 
Environment (EAGLE) study, which used Vanderbilt University Medical Center’s de-identified 
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biorepository (BioVU) to link patient EHR data with blood-based DNA samples.9 Details of the 
consent model and other human subjects issues are described elsewhere.10 EAGLE selected 9,559 
individuals for inclusion in based upon adminstratively-reported African American race,11,12 rather 
than for specific health phenotypes, which minimizes ascertainment bias.13  Samples were 
genotyped using the Illumina Metabochip, a custom array of almost 200,000 SNPs that targets 
genomic regions previously associated with type 2 diabetes, obesity, coronary artery disease, and 
other cardio-metabolic traits for fine-mapping purposes.14  As part of quality control, variants were 
removed that did not have at least a 95% genotyping efficiency rate, or that did not vary in this 
dataset, leaving a total of 192,093 variants for analysis.    

2.2.  Local Ancestry Determination 

Local ancestry was assigned using a two-step process: first, we phased the genotype data using 
SHAPEITv215 and the 1000 Genomes Phase 3 reference panel (available for download at 
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference). There were 171,439 variants that 
were successfully phased; when variants failed it was typically due to inconsistencies with the 
reference panel. We then used RFMix16 (v1.5.4) to assign local ancestry of the phased genetic data, 
using a window size of 0.1 cM, and a minimum node size of 5.  Phased chromosomal haplotypes 
were matched to ancestral population reference panels. We used all Yoruba (YRI) and 
CEPH/European (CEU) individuals from 1000G, phase 3v5a, representing African (AFR) and 
European (EUR) ancestry, respectively.   

2.3.  Electronic Phenotyping and Quality Control 

Using the GWAS Catalog,18 we identified phenotypes and their corresponding EHR trait that had 
previous associations to regions fine-mapped by Metabochip (Table 1). Across the EHR, individuals 
have multiple measures for many quantitative traits, such as height/weight/BMI19 and low-density 
lipoprotein (LDL) levels. For the majority of traits, we computed the median measurement for each 
year with data available in the EHR, and then computed the median of these scores. For more rarely 
collected quantitative traits (i.e. uric acid, serum albumin, etc), we took the median value over all 
entries. For all phenotypes, we removed clearly non-valid scores (i.e., scores of zero or one), and 
then removed outliers (those scores more than three standard deviations away from the mean) as 
quality control.     

2.4 Statistical analyses 

Given that local ancestry is specific to a given chromosome, we performed all analyses on the level 
of the chromosome, rather than the individual.  We used linear regression to determine whether local 
ancestry transitions interacted with the allele to influence the phenotypes of interest, using the 
following model: 

𝑦𝑦 = 𝐴𝐴 + 𝐿𝐿𝐴𝐴 + 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇 + 𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇 + 𝑃𝑃𝐶𝐶1−3 + 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑇𝑇𝐺𝐺𝐴𝐴𝑇𝑇 + 𝐵𝐵𝐵𝐵𝐵𝐵 

where y is the phenotype of interest; A corresponds to the allele status (0, absence of the allele; 1, 
presence of the allele); LA corresponds to the local ancestry at the variant (0, African ancestry; 1, 
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European ancestry); TRANS indicates the presence of a local ancestry transition within the 
Metabochip region (0, no transition; 1, no transition); A*TRANS represents the interaction term 
between the allele and local ancestry transition (1 indicates presence of both the allele and a local 
ancestry transition; 0 encompasses all other possibilities).  AGE, GENDER, and the first three 
principal components (PC1-3) were included as covariates for all analyses.  In the case of binary 
phenotypes, logistic regression was used. Because this analysis is designed as an investigation of 
known SNP-trait associations, we used a region-phenotype level Bonferroni multiple testing 
correction, correcting for the number of tests performed within each Metabochip region. 

Table 1.  GWAS Catalog traits with genetic associations in Metabochip regions. *median value was taken. In 
** the median of yearly medians was taken. 

GWAS Catalog 
Trait 

Corresponding EHR Trait Metabochip Region Top 
Reported 
Gene 

Urate levels Uric Acid* chr6:25235303-26141375 SLC17A1 

Type 2 diabetes PAGE T2D Algorithm17 chr11:2444094-2943115 KCNQ1 

Red blood cell 
traits 

Red Blood Cell Count*; Red Cell Distribution Width*  chr6:25235303-26141375 HFE 

Iron status 
biomarkers 

Total Iron Binding Capacity* chr6:25235303-26141375 HFE 

Weight Weight** chr16:53539509-54185787 
chr18:57727147-58094636 

FTO 
MC4R 

Hematology traits Albumin*; Alkaline Phosphatase*; Anion-gap*; Blood 
Urea Nitrogen*; Calcium*; Cloride*; CO2*; 
Creatinine*; GluBed*; Glucose*; Hgb*; Potasium*; 
Mean Corpuscular Hemoglobin*; Mean Corpuscular 
Volume*; Sodium*; RBC Count*; Red Cell 
Distribution Width*; Aspartate Aminotransferase*; 
Alanine Transaminase*; Total Bilirubin*; White Blood 
Count; MPV*; Platelet Count*; Total Iron Binding 
Capacity* 

chr6:25235303-26141375 HFE 

Mean platelet 
volume 

MPV* chr12:111290599-113206306 
chr12:111505708-113105952 
chr12:111681897-112225304 
chr6:25235303-26141375 

ACAD10 
ACAD10 
ACAD10 
LRRC16A 

Height Height** chr7:27784039-28282062 JAZF1 

Obesity-related 
traits 

BMI** chr16:53539509-54185787 FTO 

Platelet count Plt-Ct* chr12:111290599-113206306 SH2B3 

Coronary artery 
disease 

Cases at least one ICD-9-CM Codes (410 – 414); all 
others were controls 

chr12:111290599-113206306 
chr12:111505708-113105952 
chr12:111681897-112225304 
chr13:110795080-111049623 
chr18:57727147-58094636 

ALDH2 
ALDH2 
ALDH2 
RP11 
PMAIP1 

LDL cholesterol First LDL-C measurement (with no mention of 
medication use) 

chr1:109655637-110043693 
chr1:109789347-109826136 

SORT1 
SORT1 

Body mass index BMI** chr12:111290599-113206306 
chr12:111505708-113105952 
chr12:111681897-112225304 
chr16:53539509-54185787 
chr18:57727147-58094636 
chr3:122976919-123206919 
chr3:123039584-123139034 

ALDH2 
ALDH2 
ALDH2 
FTO 
MC4R 
ADCY5 
ADCY5 
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Figure 1. Stratified phenotype distributions reveal interactions between local ancestry transitions and variants 
regulating creatinine (A), white blood cell (WBC) counts (B), and CO2 levels (C).  Interactions are 
characterized by stratifying chromosomes based on: the local ancestry at the variant (EUR or AFR); the major 
or minor allele; and the presence and relative location (upstream/downstream) of a local ancestry transition on 
that chromosome within the broader Metabochip region.  The number of chromosomes observed for each 
category is provided and reveals that the interactions for creatine and WBC are driven by a small number of 
chromosomes. The overall median value for each phenotype is represented with a red line. P-values for these 
interaction tests are given in Table 2. 
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3.  Results 

3.1.  Local ancestry transitions interact with variants to influence GWAS Catalog traits 

Using the GWAS Catalog,18 we identified phenotypes that had previous associations to regions fine-
mapped by the Metabochip. We analyzed Metabochip regions with at least 100 local ancestry 
transitions to provide power to detect the interaction of these transitions with risk alleles. We only 
considered associations that made reference to African ancestry in the study sample, were for 
phenotypes that could be readily derived from the EHR, and had at least 200 cases/values in the 
EHR.  This resulted in 28 regions (Table 1), and a total of 57 trait-region pairs.   

 

Figure 2. Chromosomes with the minor allele for rs16890640 on a European background and a downstream 
local ancestry transition are associated with lower MCV (A) and MCH (B). P-values for these interaction 
tests are given in Table 2.Only one chromosome category was significant with multiple testing corrections for 
each pairwise test: the minor allele of rs16890649, on a European ancestry, with a downstream local ancestry 
transition for MCH (p = 0.0024, shown in blue). 

Due to both differential linkage disequilibrium (LD) structure between populations and differences 
in SNP coverage in the original GWAS reporting these associations, we tested all variants within 
the Metabochip region for association with the phenotype.  For each trait-Metabochip region pair, 
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there was at least one nominal genetic association suggesting genetic association within the region. 
We next evaluated the impact of local ancestry transitions on regional SNP-trait associations.   

We identified five significant interactions between local ancestry transitions and the allele across all 
traits, using a Bonferroni multiple testing correction for all tests within each Metabochip region (adj 
P < 0.05) (Table 2).  We then characterized these interactions, grouping chromosomes together 
based on their local ancestry, allele, and local ancestry transition status. For two interactions, 
significance is driven by chromosomes that are rarely observed. The interaction for rs9467458 with 
creatinine levels (P = 6.90E-11, Figure 1A) is driven by a single chromosome of European ancestry 
containing the minor allele, and having a downstream local ancestry transition. The interaction for 
variant rs4712930 regulating white blood cell (WBC) counts (P = 8.99E-05, Figure 1B) is attributable 
to three chromosomes with African ancestry containing the minor allele, and having an upstream 
ancestry transition. While these may represent real genetic effects, given the small number of 
observations within our data, we did not investigate these associations further. The interaction 
between the variant rs1410438 and CO2 levels (P = 7.83E-05, Figure 1C) shows an interesting pattern 
in which the minor allele on either ancestral background in the context of an ancestry switchpoint 
is associated with higher CO2 levels. This result points to an effect of this region, but because there 
is no clear biological influence of the ancestry swichpoint, this region was not further investigated.   

Table 2. Significant trait associations (all within chr6:25235303-26141375 region) showing SNP by ancestry 
transition interactions.  

Trait Index Variant Allele p Switchpoint p Local Ancestry p Switch x Allele p 
Creatinine chr6:25399755 0.759601 2.92E-10 0.639942 6.90E-11 

WBC  chr6:25511686 0.170542 0.11056 0.892657 8.99E-05 
CO2 chr6:25524034 0.169619 0.048373 0.234598 7.83E-05 

MCV chr6:25577310 0.218143 0.002092 0.153851 7.12E-05 
MCH chr6:25577310 0.071935 0.002658 0.209261 1.24E-05 

 

The two remaining significant interactions for rs16890640 and mean corpuscular hemoglobin 
(MCH) and mean corpuscular volume (MCV) are illustrated in Figure 2. Both have low numbers of 
chromosomes in a category; however, these low frequency categories closely resemble the sample 
median and do not drive the significance of the effect. To identify the categories driving the 
interactions, we compared each category against the rest of the population with a Mann-Whitney U 
test.  Only one chromosome category was significant after multiple testing correction for each 
pairwise test; for both traits the interaction is predominantly driven by the minor allele of 
rs16890640 on a background of European ancestry, with a downstream transition to African 
ancestry (p = 0.0024).  A composite of Manhattan plots in the context of local ancestry transitions 
for MCH associations on this chromosome 6 region is shown in Figure 3.   

Mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV) are highly correlated 
with one another, and consequently, the interactions strongly resemble one another. We investigated 
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Figure 3. The association of genetic variants within chr6:25235303-26141375 with MCH interacts with local 
ancestry. Manhattan plots for the effect of the allele (A), local ancestry (B), presence of a local ancestry 
transition in the region (C), and an interaction between the allele and local ancestry transition (D) – please 
note differences in scale.  The specific local ancestry transitions observed in this region are shown in panel E. 
Dark green indicates European ancestry along the chromosome; light green indicates African ancestry. 
rs1800562 (location marked by gray line in panel (A) has been associated with a variety of iron-related 
phenotypes.   

A. 

B. 

C. 

D. 

E. 
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the impact of the downstream transition to African ancestry by stratifying the 22 individuals 
from the significant chromosome category based on the location of their local ancestry 
transition.  Local ancestry transitions occurred at three downstream points (Figure 3E). We 
observed a position-dependent effect wherein individuals with a transition to African 
ancestry at the point nearest to the variant (chr6:25481231) had lower MCH levels (Figure 
4). Individuals with transitions to African ancestry at the two subsequent points began to 
approach the median MCH level. This suggests that the putative functional element 
interacting with rs16890640 is located between rs16890640 and the second transition point. 

 

Figure 4. The effect of downstream local ancestry transitions on MCH is position-dependent.  Median MCH 
level is shown in red. The number of chromosomes with European ancestry is provided above each boxplot. 

3.2.  Local Ancestry Transitions May Affect Chromatin Looping 

To further characterize rs16890640 and explore potential biological mechanisms mediating its 
detected interaction with downstream local ancestry transitions, we analyzed its frequency in 
different populations and genomic context. rs16890640 is roughly three times more common in 
European-descent populations (EUR = 21%) than it is in African-descent populations (AFR = 8%) 
based on 1000 Genomes Project Phase 3 frequencies.20 It occurs within an intron of CARMIL1 
(LRRC16A), a cytoskeleton-associated protein involved in regulation of actin polymerization and in 
megakaryocyte development and platelet production (Reactome Pathway R-HAS-983231). 
rs16890640 falls within an observed binding site for MAFK, a transcription factor relevant to 
hemoglobin phenotypes (Figure 5); knock out of MAFK in mice results in reduced MCV and MCH 
levels.21 Additionally, it is less than 500 base pairs upstream of a predicted insulator element; 
however, chromatin looping patterns indicate that contacts occur on either side of this putative 
insulator (Figure 6). Thus, rs16890640 occurs within a plausibly relevant genomic-region, and is 
more frequent in Europeans.  

We also identified a relatively close (within 20 kb) GWAS-catalog variant associated to a related 
phenotype, serum transferrin levels (i.e., the amount of glycoproteins that bind free iron).22 Notably, 
this variant (rs2274089) is flanked by the two recombination peaks that could result in a local 
ancestry transition in the area of interest (Figure 5). The first of these recombination peaks is 
observed in both European (CEU) and African (YRI) descent populations;  
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Figure 5. Ancestry-specific recombination hotspots may disrupt functional elements pertinent to MCH and MCV. 
rs16890640 (orange line) is located within MAFF and MAFK binding sites, and is approximately 500 bp upstream of a 
predicted insulator element. rs16890640 interacts with a downstream local ancestry transition occuring at one of the two 
African-specific  recombination hotspots shown here, and is proximal to rs2274089 (blue line), a GWAS catalog variant 
for related traits which overlaps an insulator element. 
 

 

Figure 6. Local ancestry transitions may perturb regional chromatin looping patterns. The African-specific 
recombination peak region physically interacts with the CARMIL1 (LRRC16A) promoter based on ChIA-PET data for 
RAD21 in the GM12878 cell line. The GWAS variant rs2274089, associated with a relevant phenotype, is highlighted 
in orange. 
 
however, the second recombination peak is African-specific.  This African-specific recombination 
peak overlaps a ChromHMM predicted insulator element (Figure 5), based largely on the presence 
of CTCF binding. Chromatin looping data suggest this region may function as an enhancer: the 
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region contacts the CARMIL1 (LRRC16A) promoter in GM12878 (Figure 6). Regardless of whether 
the region is an enhancer or insulator, it is engaged in regulatory chromatin looping, and we propose 
that the downstream transition to African ancestry introduces a haplotype that alters the regional 
chromatin conformation to modify the effect of rs16890640 on MCH and MCV levels. 
 
4.  Conclusion 

In this study, we hypothesized that the recombination of historically isolated ancestral haplotypes 
in admixed populations would result in unique combinations of genetic variants that, since they have 
not been subject to evolutionary pressures, are more likely to influence phenotypes relevant to 
human health.  We investigated this hypothesis in almost ten thousand adults of African ancestry, 
with both EHR-derived phenotypes and genetic data from targeted regions on the Metabochip.  We 
identified a compelling example that suggests that combinations of haplotypes from different 
continental ancestries may interact with one another to influence hematological traits in humans. 

Chromatin looping is one biological mechanism that may explain our observed statistical interaction 
between a SNP and a downstream transition to African ancestry.  Chromatin looping establishes 
“domains” in which gene regulatory activity can be confined, keeping the promoters and enhancers 
for one gene from influencing another.  It is possible that the African-specific recombination hotspot 
(which overlaps putative insulator elements) has introduced low-frequency genetic variants on 
African-descent haplotypes that alter the insulator’s function or epigenetic state.  With loss of the 
insulator, the regulatory variant rs16890640 is then able to engage in ‘off-target’ effects, which 
ultimately reduce MCH and MCV levels. Alternatively, an African haplotype may be simply 
carrying another functional variant that interacts with rs16890640 to influence MCH and MCV, 
regardless.  Ultimately, molecular validation will be required to discern between possibilities. 

This approach of examining the modifying role of local ancestry in single variant association studies 
has several limitations.  First, the resolution of local ancestry transitions is limited by the density 
and proximity of variants along the chromosome that are captured by the genotyping array or 
imputation. Secondly, we collapsed all local ancestry transitions into a single variable, regardless of 
where the transition occurred within the region.  This introduces additional noise within the data, as 
not all transitions may have the same effect. Furthermore, by examining each phased chromosome 
separately, we do not capture trans effects between them. In the future, additional models of local 
ancestry and variants may address these limitations. 

The interaction we identified provides potential evidence for epistasis influencing health-related 
phenotypes in humans. The variant rs16890640 is not significantly associated with the phenotype 
on its own – it is only in combination with the downstream transition to African ancestry that an 
association to the phenotype is observed.  While it is possible that this haplotype conformation tags 
a causal variant within this region, we consider this unlikely as nearby variants did not demonstrate 
a strong association. Instead, it highlights that admixed populations provide a unique opportunity to 
investigate epistasis, as novel combinations of variants are generated and population-specific 
recombination hotspots may disrupt functional haplotypes.  This further highlights the need to 
perform genetic studies within admixed populations (as the variants may not have an effect in either 
continental population) to address health disparities and the role of epistasis in human health. 
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