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ABSTRACT Enhancers and promoters both regulate gene expression by recruiting transcription factors (TFs); however, the degree to
which enhancer vs. promoter activity is due to differences in their sequences or to genomic context is the subject of ongoing debate.
We examined this question by analyzing the sequences of thousands of transcribed enhancers and promoters from hundreds of cellular
contexts previously identified by cap analysis of gene expression. Support vector machine classifiers trained on counts of all possible
6-bp-long sequences (6-mers) were able to accurately distinguish promoters from enhancers and distinguish their breadth of activity
across tissues. Classifiers trained to predict enhancer activity also performed well when applied to promoter prediction tasks, but
promoter-trained classifiers performed poorly on enhancers. This suggests that the learned sequence patterns predictive of enhancer
activity generalize to promoters, but not vice versa. Our classifiers also indicate that there are functionally relevant differences in
enhancer and promoter GC content beyond the influence of CpG islands. Furthermore, sequences characteristic of broad promoter or
broad enhancer activity matched different TFs, with predicted ETS- and RFX-binding sites indicative of promoters, and AP-1 sites
indicative of enhancers. Finally, we evaluated the ability of our models to distinguish enhancers and promoters defined by histone
modifications. Separating these classes was substantially more difficult, and this difference may contribute to ongoing debates about
the similarity of enhancers and promoters. In summary, our results suggest that high-confidence transcribed enhancers and promoters
can largely be distinguished based on biologically relevant sequence properties.
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THE regulation of gene expression plays an important role
in all biological processes. In multicellular organisms, the

repertoire of expressed genes varies depending on cell type,
developmental stage, and the presence of stimuli (Orozco
et al. 2012; Bauer et al. 2013; Brown et al. 2013; Busche
et al. 2015). Differential expression of genes is implicated
in many diseases, and is often mediated by genetic variation
in regulatory sequences (Fortini et al. 2014; Claussnitzer
et al. 2015; GTEx Consortium 2015; Lupiáñez et al. 2015).

Promoters and enhancers are regulatory sequences that
work in concert to control gene expression at the transcrip-
tional level. Promoters are traditionally defined as sequences
immediately upstream of a transcription start site (TSS) that

aredirectly involved in recruitinggeneral transcription factors
(TFs) and RNA polymerase II to the gene, and directing
transcription (Kwak et al. 2013). Enhancers are sequences
that recruit proteins that interact with promoters to facilitate
and modulate transcription of genes, but can be thousands of
base pairs away from their targets (Levine 2010). Many dif-
ferent assays have been developed to identify regions with
promoter and enhancer activity (Benton et al. 2018; Rickels
and Shilatifard 2018). For example, cap analysis of gene ex-
pression (CAGE)-based approaches map the locations of cap-
ped 59 ends of transcribed RNA to the genome to identify
regions involved in the regulation of transcription [Andersson
et al. 2014; FANTOM Consortium and the RIKEN PMI and
CLST (DGT) et al. 2014]. Since many enhancers are
transcribed, this enables the identification of enhancers as
well as promoters. Another common identification approach
is to profile different histone modifications that are charac-
teristic of each type of region. Trimethylation at the fourth
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lysine of histone 3 proteins (H3K4me3) is enriched near pro-
moters, while monomethylation of the same residue
(H3K4me1) is common at enhancers (Heintzman et al.
2007). However, we note that histone mark patterns at pro-
moters and enhancers are complex and incompletely under-
stood, and are not necessarily the cause of the regulatory
activity (Calo and Wysocka 2013; Kim and Shiekhattar
2015).

Given the challenges of mapping regulatory regions, and
enhancers in particular, there has beenextensiveworkonusing
genomic sequence characteristics to identify enhancers. En-
hancer-finding algorithms based solely on sequence informa-
tion have successfully predicted active enhancers in many
tissues (Burzynski et al. 2012; Ghandi et al. 2014;
Kleftogiannis et al. 2016). We have previously published a
support vector machine (SVM) framework capable of identi-
fying enhancers and segregating them by their activity across
tissues (Colbran et al. 2017). Several studies have reported
distinct TF-binding preferences between enhancers and pro-
moters (Rada-Iglesias et al. 2011; Shen et al. 2012; Thurman
et al. 2012; Core et al. 2014; Nguyen et al. 2016), and some of
these differences may be due to differences in GC content
(Andersson et al. 2014). However, sequence-based enhancer
predictors often also mistakenly identify promoters (Herman-
Izycka et al. 2017).

There are many similarities between promoters and en-
hancers. Both contain sequences to recruit and bind TFs, in
some cases the same ones (Bienz and Pelham 1986). In
particular, promoters that lack CpG islands (CGIs) have sim-
ilar sequences, recruit similar TFs, and have similar chro-
matin structure to enhancers (Andersson 2015; Andersson
et al. 2015). In addition, enhancers and promoters are both
transcribed, at least in some contexts (Natoli and Andrau
2012). Furthermore, the same sequence can have both pro-
moter and enhancer activity, contingent on the context and
particular complement of TFs bound (Nguyen et al. 2016).

As a result of these similarities, recent work has proposed
blurring the traditional distinction between promoters and
enhancers (Raab and Kamakaka 2010; Andersson et al. 2015;
Kim and Shiekhattar 2015). Indeed, classifiers trained to dis-
tinguish tissue-specific promoters from the genomic back-
ground can also be used to predict tissue-specific
enhancers, indicating the presence of similarity in their se-
quences (Taher et al. 2013).

In this study, we directly compare transcribed enhancers
and promoters identified by the Functional ANnotationOf the
Mammalian genome (FANTOM) Consortium by evaluating
the similarity of the DNA sequence patterns underlying their
activity acrossmultiple cell types and contexts. In spite of their
known sequence similarities, we show that machine learning
classifiers can be trained to distinguish promoters from en-
hancers and to predict their activity levels across cellular
contexts using short DNA sequence patterns (6-mers). It is
possible to distinguish enhancers and promoters even when
stratifying regions by CGI overlap. Furthermore, sequence-
based models trained to predict enhancers and their levels of

activity can also identify promoters; however, models that
predict promoters are far less accurate at identifying en-
hancers. Interpreting the patterns learned by our classifiers
revealed substantial differences in the sequence content of
enhancers and promoters. For example, the association of
GC content with promoter activity is present beyond the
influence of CGIs. We also identify several DNA sequence
patterns that are associated with enhancer (or promoter)
activity. Many of these sequences match binding motifs for
different TFs (e.g., AP-1 for enhancers and ETS for pro-
moters) and have been identified in previous Massively
Parallel Reporter Assay (MPRA) studies. Their importance
in our classifiers (which consider hundreds of cellular con-
texts) suggests their broader relevance beyond the few
contexts considered in the MPRAs. Finally, we find that
accurately distinguishing enhancers and promoters identi-
fied by the Roadmap Epigenomics Consortium based on
histone modifications using 6-mer sequence patterns is sig-
nificantly more challenging. This difference may contrib-
ute to the ongoing debate about the similarity of enhancers
and promoters, and should be addressed in future work.
Collectively, our results suggest that while sequences with
enhancer and promoter activity have many similarities,
there are consistent differences between them at the se-
quence level, and enhancers and promoters defined by dif-
ferent experimental assays have different sequence
relationships.

Materials and Methods

Enhancer data

We analyzed enhancers identified by CAGE from the FANTOM
Consortium across all 411 different tissues and cellular con-
texts they examined (Andersson et al. 2014). CAGE tags and
isolates RNAs with a 59 cap, which includes mRNAs and en-
hancer RNAs. With this method, active enhancers can be
distinguished by bidirectional transcription, whereas pro-
moters show a strong bias toward the sense direction. For
enhancers, this approach explicitly excluded regions near
known transcription start sites and exons of mRNAs (both
protein-coding and noncoding), and long noncoding RNAs.
We defined enhancers as the 600-bp regions flanking the
midpoint between the paired bidirectional CAGE peaks.
Given that the average distance between paired enhancer
CAGE peaks is 180 bp, this results in consideration of
�390 bp upstream and �210 bp downstream of each en-
hancer TSS. However, there is a wide amount of variability
in the overall length of the original FANTOM enhancers, so
these sequences likely have varying proportions of regulatory
influence. Of the 38,538 robust enhancers, we defined the
top 5% enhancers active in most contexts as the “broadly
active” set; this corresponded to enhancers active in. 45 con-
texts. Altering this threshold did not significantly alter clas-
sifier performance (Supplemental Material, Figure S2).
Correspondingly, we defined the lowest 5% as “narrowly
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active” or “context-specific” enhancers, which corresponded
to enhancers active in a single context. The enhancers with
the broadest activity were active in all 411 contexts.

We used shuffleBed (Quinlan and Hall 2010) to obtain
random sets of length-matched nonenhancer regions for each
enhancer set. We also generated negative regions matched
on GC content and chromosome, as well as length. For this,
we used a custom script that finds all regions on a chromo-
some of the same length with similar GC content and ran-
domly selects a representative for each positive region. The
negative region sets excluded all enhancers from the full
permissive CAGE enhancer data set (43,011 total sequences),
Encyclopedia of DNA Elements (ENCODE) blacklist regions,
genome (hg19) assembly gaps, and experimentally verified
VISTA enhancers (downloaded in March 2014) (Visel et al.
2007).

We also trained a direct promoter–enhancer classifier us-
ing regions defined based on histone marks from the Road-
map Epigenomics Project (Kundaje et al. 2015). Specifically,
these consisted of H3K27ac and H3K4me1 chromatin immu-
noprecipitation sequencing (ChIP-seq) peaks in 98 primary
tissues. We defined enhancers for each tissue as the intersec-
tion of the two marks, then merged all regions across tissues
that overlapped by$1 bp. We considered the central 600 bp
of the resulting regions to control for length. We also filtered
for those regions that were never considered to be promoters
by excluding all regions that overlapped with a promoter in
any tissue.

Promoter data

We defined promoters based on CAGE peaks predicted to be
TSSs by FANTOM (FANTOMConsortium and the RIKEN PMI
and CLST (DGT) et al. 2014). In cases where these regions
overlapped on the same strand, suggesting they were alter-
nate start sites for the same gene, we combined the two
regions and used the mean activity, which left us with
27,227 promoter regions. To match the sequences analyzed
for the enhancers, we considered the central 600 bp of the
resulting regions (expanding 100 bp in both directions on the
300-bp upstream and 100-bp downstream definition used by
FANTOM). In most cases, this resulted in a promoter being
400-bp upstream and 200-bp downstream of the TSS. We
defined the top and bottom 5% by activity to be our broadly
and narrowly active promoters, which corresponded to pro-
moters active in . 372 contexts and , 9 contexts, respec-
tively. The promoters with the broadest activity were active in
382 of the 411 contexts. Because of the differences in their
overall levels of activity and the number of contexts assayed,
the thresholds for the broad and narrow promoter and en-
hancer classes corresponded to different numbers of contexts
(Figure S14). As we did with enhancers, we generated both
length- and GC-matched random background sets, excluding
hg19 assembly gaps, ENCODE blacklist regions, and our full
promoter set.

To match the Roadmap enhancer data, we defined pro-
moters for each tissue as the H3K27ac peaks that did not

overlap with H3K4me1 peaks, then merged all regions across
tissues that overlapped by$ 1 bp. We considered the central
600 bp of the resulting regions to control for length. We also
filtered for those regions that were never considered to be
enhancers by excluding all regions that overlapped with an
enhancer in any tissue.

Regulatory region prediction from DNA
sequence patterns

For all classification tasks, we trained 6-mer spectrum kernel
SVMs to distinguish between sets of genomic regions. The
spectrum kernel is a string kernel that defines the similarity of
two sequences based on the occurrence of all possible short-
sequence patterns of length k within them, including reverse
complements (Leslie et al. 2002). All SVM analyses were
performed using the SHOGUN Machine Learning Toolbox
v4.0.0 (Sonnenburg et al. 2010). We set the soft margin con-
stant, C, based on the balance of positives and negatives in
the training set (Ben-Hur and Weston 2010); since nearly all
of our training sets were balanced, this resulted in a value of
1.0 for most analyses. Performance of the classifiers was eval-
uated using 10-fold cross-validation across the full data set.
We partitioned the data into 10 nonoverlapping subsets with
the same number of positives and negatives in each, trained a
classifier on 90% of the data, and then evaluated the classi-
fier’s performance on the remaining 10%. We repeated this
procedure 10 times using each partition as the evaluation set
once, and calculated receiver operator characteristic (ROC)
and precision recall (PR) areas under the curve (AUCs) by
averaging over the 10 cross-validation runs. All figures plot
the average, maximum, andminimum curves obtained unless
otherwise stated. Because we did not tune hyperparameters
or select models based on performance on this data set, we
did not use a separate validation set. We computed the aver-
age weights for each possible 6-mer in each SVM (Guyon
et al. 2002), and when comparing to the genomic back-
ground, we averaged across runs vs. four independent ran-
dom negative sets.

To evaluate the ability of models to directly distinguish
FANTOM promoters from enhancers, we trained and evalu-
ated on nine nonoverlapping random sets of 3000 regions
fromeachclass.Toensure thatour resultswerenot sensitive to
the particular sets chosen, we trained an independent classi-
fierasdescribedabove (including10-fold cross-validation) for
each pair of sets and reported the average performance of the
classifiers over these subsets. We controlled for length differ-
ences by expanding or contracting enhancers and promoters
in each set to be 600-bp long—approximately the maximum
enhancer length—while maintaining their original centers.
For the Roadmap replication sets, we trained and evaluated
on 10 random subsets of 4000 regions from each class. For all
classifiers, we compared feature weights using the mean
weight of each 6-mer across the nonoverlapping subsets.

Training and evaluation of classifiers for distinguishing
broadly active regions of each type vs. genomic background
or context-specific regions proceeded similarly, using the
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regions generated as described above. When the positive
and negative sets were of different size, we took a random
subset of the larger set, so there would be a 50% chance of
picking a positive or negative at random.

To assess the performance of classifiers trained on en-
hancers at predicting promoters, and vice versa, we calcu-
lated the relative ROC AUC (ROC AUCpred/ROC AUCtrain),
where ROC AUCpred is obtained from evaluation of the
classifiers trained on one type of region at predicting the
other types of regions, and ROC AUCtrain is obtained by
evaluating the classifiers on the same types of regions that
they were trained on.

Principal component analysis

To summarize and visualize the sequence similarities of
regulatory regions, we performed principal component anal-
ysis (PCA)on their sequences.Wecounted theoccurrences of
all possible 6-mers in each promoter and enhancer, then
transformed the counts using log10(count+1) and stan-
dardized them before conducting PCA using prcomp in the
R stats package with the default settings.

TF-binding motif and expression analysis

Weobtained 248humanTF-bindingmotifs from theHOCO-
MOCOv9 database (Kulakovskiy et al. 2013), 402 from the
HOCOMOCO v11 CORE database (Kulakovskiy et al.
2018), and 519 motifs from the JASPAR 2016 vertebrate
database (Mathelier et al. 2016). We used tissue specificity
scores (TSPS) for 332 TFs from the FANTOM Consortium
(Ravasi et al. 2010). A TF with uniform expression across
all 34 tissues considered is assigned a TSPS of zero, while a
TF expressed in only a single tissue receives the highest
TSPS (�5). Following the original analysis of TSPS, we
classified 157 TFs as “specific” (TSPS $ 1) and 175 as
“broad” that are expressed in a wider range of contexts
(TSPS , 1).

We counted the occurrences of all TFmotifs in sequences
of interest by first controlling for length by expanding or
contracting all regions to be 600-bp long, focused on the
center of each region.We used FIMO under default settings
(Grant et al. 2011), then tallied the counts by specificity.
We tested for enrichment of predicted binding sites by
activity using a binomial test for the mean proportion of
broad motifs in a given set of regulatory regions vs. the
overall proportion of broad motifs in the database being
used. We also compared the distribution of those propor-
tions between regulatory region sets using aWilcoxon rank
sum test.

We used Tomtom version 4.10.1 to calculate the similarity
between 6-mers and each TF-binding motif, with default
parameters (Gupta et al. 2007). We compared the full distri-
butions of P-values for the broad and specific TF groups using
the Wilcoxon rank sum test. For matching TFs to specific
6-mers in the promoter vs. enhancer classifiers (Figure 3D
and Figure S10), we used the HOCOMOCO v11 CORE data-
base (Kulakovskiy et al. 2018).

Data availability

Data and scripts used in this study are available on GitHub
(https://github.com/colbrall/enhancer_promoter_manuscript),
or from the authors upon request.

Results

Promoters and enhancers have distinct DNA
sequence patterns

Motivated by the similarities in the sequence, and func-
tional architectures of enhancers and promoters, we in-
vestigated the ability of a machine learning algorithm to
distinguish the two types of regions based on sequence
characteristics. We considered 38,538 enhancers and
27,227 promoters from 411 cellular contexts identified
using CAGE by the FANTOM Consortium [Andersson
et al. 2014; FANTOM Consortium and the RIKEN PMI
and CLST (DGT) et al. 2014]. We trained SVM classifiers
to distinguish enhancers and promoters using the frequen-
cies of all 4096 possible 6-bp-long sequences (6-mers) in a
600-bp window centered on the FANTOM-defined regions
(Materials and Methods). To facilitate training and evalu-
ation, we split the promoters and enhancers into nine ran-
dom nonoverlapping subsets of 3000 promoters and
enhancers, and performed 10-fold cross-validation within
each subset to evaluate performance (Materials and
Methods).

The classifiers were able to distinguish promoters from
enhancers with high accuracy. They achieved average areas
under ROC AUCs of 0.86 and areas under PR AUCs of 0.88
(Figure 1, A and B). The strong performance of the models
was consistent across independent subsets of enhancer and
promoters (ROC AUC range 0.85–0.91; PR AUC range 0.85–
0.92).

The accuracy of the classifiers was somewhat surprising
given recent work that has found strong commonalities be-
tween promoter and enhancer sequences, especially between
enhancers and non-CGI promoters [Andersson et al. 2014;
FANTOM Consortium and the RIKEN PMI and CLST (DGT)
et al. 2014]. Furthermore, machine learning models trained
to accurately distinguish active from inactive promoters
based on sequence characteristics (TF-binding site motifs,
specifically) are also able to predict enhancers (Taher et al.
2013). However, this previous study focused on promoters
and enhancers with tissue-specific activity, so it is possible
that the similarity of promoters and enhancers varies based
on breadth of activity. In other words, promoters and en-
hancers specific to a given context may be very similar in their
sequence properties; meanwhile, consistent with our results,
more broadly active regions may have less similarity. It is also
possible that enhancers and promoters identified by different
experimental techniques may have different levels of se-
quence similarity. We explore these possibilities over the next
few sections by investigating the sequence patterns underly-
ing breadth of activity in transcribed enhancers and
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promoters, characterizing their similarities and differences,
and examining other enhancer and promoter sets.

Sequence-based classifiers are able to distinguish the
breadth of activity of enhancers and promoters
across tissues

Many enhancers are active in a small number of tissues, while
most promoters are active in a large number of tissues (Figure
S1). We previously demonstrated that SVM classifiers can
predict enhancers and their breadth of activity using charac-
teristics of their sequences (Colbran et al. 2017). Thus, we
hypothesized that the ability to distinguish enhancers from
promoters based on sequence patterns could be influenced by
the differences in their activity levels. To test this, we identi-
fied sets of broadly and narrowly active regions of each type.
For both enhancers and promoters, we defined the top and
bottom 5% by activity as broadly and narrowly active regions
(Materials and Methods).

As expected from our previous work, SVM classifiers were
able todistinguishenhancerswithbroadactivity across tissues
from those with narrow activity and from the genomic back-
ground based on sequence properties (Figure 2A, ROC AUCs
of 0.87 and 0.93, respectively), and this ability is not contin-
gent on the specific thresholds used to define broad and nar-
row activity (Figure S2). In contrast, the classifier was no
better than random when attempting to distinguish en-
hancers and promoters when their labels were shuffled
(Figure S3). Next, we evaluated the ability of 6-mer spectrum
SVM classifiers to distinguish broadly active promoters from
narrowly active promoters and negative control regions with-
out promoter activity. The classifiers were able to distinguish
broadly active promoters from context-specific promoters
and from background regions with high accuracy (Figure
2B and Figure S4, ROC AUCs of 0.98 and�1.0, respectively).
In fact, the promoter-trained classifiers were even more ac-
curate at distinguishing broadly active promoters from the
negative regions than the corresponding enhancer-trained
classifiers across all classification tasks: ROC AUCs between
0.94 and �1.0 (Figure 2B and Figure S4). Because these

classifiers were all trained on balanced data, it is important
to note that the reported AUCs are not necessarily reflective
of their performance over the whole genome.

Becauseof theknowncorrelationsbetweenGCcontentand
regulatory activity (Colbran et al. 2017), we also tested the
ability to distinguish promoters and enhancers from back-
ground regions matched for GC content (Figure 2). For both
region types, performance when predicting positives vs.
GC-matched regions dropped compared to vs. non-GC-
matched regions. However, the promoter classifier’s perfor-
mance was nearly as good as vs. non-GC-matched regions;
this suggests that it is “easier” to distinguish between broadly
and narrowly active promoters than between broadly and
narrowly active enhancers.

Classifiers trained on enhancers are generalizable to
promoters, but not vice versa

Given that the breadth of activity of both enhancers and
promoters could be accurately predicted from DNA sequence
patterns (Figure 2), we next sought to test how well the se-
quence patterns informative about breadth of activity gener-
alized between promoters and enhancers. We evaluated this
by applying 6-mer sequence models trained to distinguish
enhancer activity to predict the activity levels of promoters,
and vice versa.

In general, classifiers trained on enhancers performedwell
on the corresponding promoter classification task: ROC AUCs
between 0.80 and 0.99 (Figure 3A and Figure S5A). However,
the reverse was often not true; promoter-trained classifiers
applied to the prediction of enhancers had much lower ROC
AUCs: between 0.6 and 0.8 (Figure 3B and Figure S5B).

To place the performance of the classifiers applied across
regulatory region types in the context of their performance on
their trainingdata,wecalculatedarelativeROCAUC(AUCpred/
AUCtraining). Enhancer-trained classifiers were generally
able to predict promoters at least as well as they performed
on the corresponding enhancer data, and in some cases, they
performed better (Figure 3C). This suggests that sequence
characteristics learned by the models to distinguish

Figure 1 Promoters and enhancers can be
distinguished from one another based on
DNA sequence properties alone. (A) ROC
curve and (B) PR curve evaluating SVM clas-
sifiers trained to distinguish FANTOM pro-
moters from enhancers using patterns of
short DNA sequences (6-mers) as features.
Plots show the mean, maximum,
and minimum curves obtained from classi-
fiers, trained and evaluated on nine unique
subsets of 3000 promoters and 3000 en-
hancers from the full data sets. AUC, area
under the curve; PR, precision recall; ROC,
receiver operator characteristic; SVM, sup-
port vector machine.
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enhancers and their activity are also sufficient for distin-
guishing levels of promoter activity across cellular contexts.
In contrast, classifiers trained on promoters always had
worse performance when applied to enhancers (Figure
3D). This suggests that the enhancer classifiers have learned
sequence patterns that influence enhancer activity levels
and are not captured in promoter classifiers.

Overall, these results suggest that, while promoters and
enhancers share key sequence features, broad enhancer
activity may be influenced by additional characteristic se-
quence patterns that classifiers trained on promoters fail to
learn.

CGI overlap does not account for all CpG content
differences between enhancers and promoters

GC content and CGIs are known to be important for broad
activity in promoters, and they are enriched in promoters
compared to enhancers (Roider et al. 2009; Fenouil et al.
2012). To explore if our classifiers learned these distinc-
tions and evaluate the importance of CGIs compared
to more general CpG content, we conducted several
analyses.

First, given the known importance of CGIs to promoter
activity, we examined the importance of GC and CpG content
to the classifiers. As expected, in the classifiers trained to
directly distinguish promoters from enhancers, 6-mers
assigned weights indicative of promoter activity were pos-
itively correlated with both GC content of the 6-mer (Spear-
man’s r = 0.38, P , 2.2E216) and its CpG content (Figure
4A; Spearman’s r = 0.56, P , 2.2E216). Results were sim-
ilar for the breadth of activity classifiers; CpG content and
overall GC content are higher in 6-mers that are predictive
of broad activity for both promoters and enhancers (Figure
S7).

To directly explore if the importance of GC and CpG content
was driven by CGIs, we trained classifiers based on enhancers
and promoters stratified based on CGI overlap. These classi-
fiers were still able to accurately distinguish promoters from
enhancerswhenbothwere inCGIs(ROCAUC=0.80,PRAUC=

0.80) and when they did not overlap CGIs (Figure S8; ROC
AUC= 0.76, PR AUC= 0.76). This was likely partially due to
the fact that matching for CGI status does not necessarily
match for GC content. Despite this, both classifiers performed
worse thanwhen not stratifying due to the lack of information
provided by CGI status. Nonetheless, given the known motif-
level similarities between transcribed enhancers and non-CGI
promoters [Andersson et al. 2014; FANTOM Consortium and
the RIKEN PMI and CLST (DGT) et al. 2014], the ability to
distinguish them reasonably accurately suggests meaningful
sequence differences.

Even with CGI stratification, GC content was significantly
correlated with the weights assigned to 6-mers for both CGI
(Spearman’s r = 0.13, P = 5.6E216) and non-CGIs (Spear-
man’s r = 0.23, P, 2.2E216) classifiers. We also evaluated
CGI-stratified breadth of activity classification. In the breadth
of activity classifiers that excluded CGIs from analysis, CpG
content still explained a significant amount of the weight
assigned to 6-mers predictive of broad promoter activity
(R2 = 0.31; P , 2.2E216). However, the association was
much lower for non-CGI enhancers (Figure S9; R2 = 0.05;
P , 2.2E216), suggesting that, while CpG content is indica-
tive of broad promoter activity even outside CGIs, the same is
not true of enhancers. We used R2 for this analysis because
we further investigated partial correlations (Supplemental
Text). PCA on the 6-mer spectra of enhancers and promoters
with varying activities also suggested that there are sequence
differences between enhancers and promoters beyond the
established difference in CGI prevalence (Figure S15 and
Supplemental Text).

Finally, we stratified the cross-region classifiers by CGI
status. The superior generalization of the enhancer classifiers
compared to promoter classifiers held both in and outside
CGIs (Figure 3, C andD). However, the non-CGI classifiers are
of particular interest, as theywere trainedwithout the benefit
of CGI presence.When the negative sets werematched for GC
content, the enhancer classifier was still superior to the cor-
responding promoter classifier, but was noticeably worse at
identifying promoters than the other enhancer-trained

Figure 2 DNA sequence-based classifiers
can accurately distinguish broadly active reg-
ulatory regions from the genomic back-
ground and narrowly active regions.
Average ROC curves for 6-mer spectrum
SVMs trained using broadly active (A) en-
hancers and (B) promoters as positives. The
negatives were an equal number of random
length-matched genomic background re-
gions (red), length- and GC-matched back-
ground regions (blue), or narrowly active
regulatory regions (purple). The shaded
areas give the maximum and minimum
curves observed over 10-fold cross-validation.
PR curves also indicated strong performance
(Figure S4, PR AUCs of 0.88–1.0). PR, pre-
cision recall; ROC, receiver operator charac-
teristic; SVM, support vector machine.
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classifiers (relative ROC AUC of 0.81 vs. . 0.92 for the
others). This suggests that, even after accounting for the
greater CGI and GC content of promoters, enhancer classi-
fiers learned sequence characteristics distinct from those of
promoters.

The 6-mers most important to distinguish enhancers
and promoters match different TF motifs

To explore how these sequence differences could affect func-
tion, we analyzed occurrence of binding motifs for TFs from
the HOCOMOCO v11 CORE database (Kulakovskiy et al.
2018) among the highly weighted 6-mers. In particular,
6-mers most characteristic of enhancers significantly (false
discovery ratio , 0.05) matched binding motifs of several
JUN and FOS proteins (key components of the AP-1 com-
plex), as well as motifs for NFE2, NF2L2, and BACH1/2 (Fig-
ure 4B). The top promoter-associated 6-mers in the direct
classifier matched binding motifs for TFs such as ZEB1,
GATA4, and SNAI1; however, these associations did not pass
multiple testing correction.

We next analyzed how the motifs for the most highly
weighted 6-mers changed in the CGI-stratified classifiers.
For the classifier trained on CGI-containing regions, nearly
all significantmotifmatches (for both enhancer and promoter
6-mers) were to ETS TF family members and its core GGAA
sequence. ETV2 and ETV4 were associated with enhancer
6-mers, and ELK1, ELK4, ETV1, and ELF2 matched promoter
6-mers (Figure S10A). Nominally significant hits included
RFX2 with promoter 6-mers, and ZEB1 to both enhancer
and promoter 6-mers. For the non-CGI classifier, the TFmotifs

matching high-weight 6-mers were similar to those in the
nonstratified classifier, with significant enrichment for AP-1
components among the enhancer-associated 6-mers (Figure
S10B).

To further validate the relevance of these sequences to
regulatory activity, we compared them to motif activity pat-
terns estimated from three recent MPRA studies. First, we
compared the 6-mers that most distinguished enhancer and
promoter activity levels in our models to conclusions from a
human MPRA study, which directly tested and compared
enhancer and promoter sequence activity (Nguyen et al.
2016). Several of the TF motifs matched by the high-weight
6-mers from the promoter and enhancer activity classifiers
were also observed in the MPRA analysis. For example, the
RFX and ETS TF families were found to be intrinsically biased
toward the generation of promoter activity, and binding mo-
tifs for TFs from these families matched 6-mers strongly as-
sociated with promoter activity in our analyses (Figure 4B
and Figure S10). Similarly, 6-mers we identified as important
to enhancer activity significantly matched the binding motifs
for components of the AP-1 complex (Fos and Jun family
members), agreeing with observations from the MPRA study
that AP-1-binding sites generate strong enhancers with little
promoter activity.

We also compared our results to two other recent MPRA
studies of regulatory region activity in HepG2 and K562 cells
(Ernst et al. 2016; Klein et al. 2018). Klein et al. (2018)
focused on liver enhancers, and they also found enrichment
for liver-expressed AP-1 complex member (FosL2 and JunD)-
binding sites in active regions, further supporting these

Figure 3 Classifiers trained on enhancers
can accurately predict promoters and their
breadth of activity, but not vice versa. (A)
ROC curves for classifiers trained on en-
hancers and then used to classify promoters.
(B) ROC curves for classifiers trained on pro-
moters and then used to classify enhancers.
Classifiers were trained using broadly active
regions as positives and genomic back-
ground regions (red, “Negatives”),
GC-matched background regions (blue,
“GC-Matched”), or narrowly active regions
(purple, “Narrow”) as negatives. PR curves
are given in Figure S5. (C and D) Relative
ROC AUCs (AUCpred/AUCtraining) for cross-
region classifiers predicting promoters and
enhancers reveal that enhancer-trained clas-
sifiers (C) generalize well to promoter
prediction tasks, but the promoter-trained
classifiers (D) do not. The superior general-
ization of the enhancer classifier held when
regions with and without CpG islands were
analyzed separately. ROC and PR curves for
(C and D) are in Figure S6. AUC, area under
the curve; CGI, CpG island; PR, precision re-
call; ROC, receiver operator characteristic.
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conclusions. Ernst et al. (2016) found ETS motifs to be
among the strongest activating among both HepG2 and
K562 cells. They also found sequences matching RFX mo-
tifs to have repressive activity in HepG2 cells. However,
since these studies did not explicitly separate enhancers
and promoters, it is difficult to directly relate their find-
ings to our own. Nonetheless, the identification of many
similar TF families supports the potential biological rele-
vance of our findings. Furthermore, the fact that we ob-
serve these patterns in analyses of enhancers and
promoters across hundreds of cellular contexts suggests
that these sequences are broadly important to enhancer
and promoter activity beyond the few cell types analyzed
in the MPRAs.

Broadly active promoters and enhancers have more
potential TF-binding sites

To explore how these sequence differences could affect
breadth of activity across many cellular contexts, we
hypothesized that regulatory regions with broad activity
would have more predicted binding sites than their nar-
rowly active counterparts after controlling for length.
Indeed, both broadly active promoters and enhancers
have more predicted TF-binding sites than their narrowly
active counterparts (mean 165.3 vs. 67.8 and 107.9 vs.
61.4, respectively; P , 2.2E216 for both, Wilcoxon rank
sum test).

Next, we tested for differences in the breadth of expres-
sion across tissues of TFs with binding sites in broadly
active and narrowly active regions. Promoters and en-
hancers on average have a significantly higher proportion
of binding sites for broadly expressed TFs than would be
expected by chance (Figure 5A; P , 2.2E216 for all, bi-
nomial test). Furthermore, broadly active regions had sig-
nificantly higher proportions of sites for broad TFs than
narrowly active regions (promoters: 0.78 vs. 0.61,

P = 3.5E2289; enhancers: 0.68 vs. 0.56, P = 4.3E2179,
Wilcoxon rank sum test). These analyses were based on TF
motifs from the HOCOMOCO database, and the results were
similar when using motifs from the JASPAR database (Figure
S12).

Next, we hypothesized that the 6-mers most predictive of
broad activity would be more similar to broadly expressed
TF-binding motifs than to context-specific TF motifs, and vice
versa. This hypothesis is supported by the fact that broadly
active enhancers are enriched for GC content, as are the
binding motifs of broadly active TFs (Colbran et al. 2017).
Supporting this hypothesis, the five highest-weighted 6-mers
from the broadly active vs. narrowly active promoter classifier
all are more similar to broadly active TF motifs than to con-
text-specific TF motifs (Figure 5B). The most negatively
weighted 6-mers follow the opposite trend and are more
similar to context-specific TF motifs. Similarly, the highest-
and lowest-weight 6-mers from the promoter vs. genomic
background classifiers follow the same trends (Figure S12).
In contrast, the high- and low-weight 6-mers from the corre-
sponding enhancer classifiers did not exhibit a clear pattern.
In fact, two of the high-weight 6-mers are more similar to
context-specific TF motifs (Figure 5C and Figure S13). In
summary, the motifs significantly similar to 6-mers predictive
of broadly active promoters belong to broadly active TFs,
while those for enhancers are a mix of broad and context-
specific TFs.

Sequence differences between enhancers and
promoters are inconsistent across regulatory region
identification strategies

Many strategies have been developed to identify regulatory
regions active in different cellular contexts, and there is in-
creasing evidence that regulatory regions defined by different
methodologies have different functional and evolutionary
properties (Benton et al. 2018). Thus, we repeated our

Figure 4 Interpreting the weights assigned
to 6-mers by the promoter vs. enhancer clas-
sifier. (A) The distribution of weights
assigned to 6-mers by the promoter vs. en-
hancer classifier (Figure 1), stratified by the
number of CpG sites in the 6-mer. Each
6-mer is represented by its mean weight
across classifiers trained on nine nonoverlap-
ping subsets of the regions. Positive weights
indicate that the 6-mer is predictive of pro-
moter activity, and negative weights are in-
dicative of enhancer activity. (B) The
distribution of mean 6-mer weights. The
6-mers with the highest and lowest weights
are labeled with their sequences and
matches to transcription factor motifs from
the HOCOMOCO v11 CORE database. Sig-

nificant matches after multiple testing correction (false discovery ratio , 0.05) are shown in bold; for high-weight 6-mers without matches that meet
this threshold, the top two nominally significant (P , 0.05) matches are listed. The top enhancer-associated 6-mers match motifs associated with
components of AP-1 (JUN and FOS) and several other families. There were no significant matches for the promoter-associated 6-mers after multiple
testing correction, but all contain the GGTA sequence, and nominally match ZEB1 and GATA factor motifs. CGI-stratified analyses are provided in Figure
S10. CGI, CpG island.

1212 L. L. Colbran, L. Chen, and J. A. Capra



analyses on two additional enhancer and promoter data sets.
First, we considered enhancers and promoters defined from
histone modifications across 98 tissues from the Roadmap
Epigenomics Project by intersecting H3K27ac ChIP-seq
peaks with H3K4me1 peaks (Kundaje et al. 2015). The
presence or absence of H3K4me1 was used as a proxy for
enhancer or promoter activity, respectively. We found
388,416 enhancers and 201,090 promoters across all
tissues, and ran analyses on nine random subsets of 4000
elements of each type. The 6-mer SVM was able to
distinguish promoters from enhancers better than random
based on the 600 bp centered on the annotated regulatory
region, but the performance was substantially lower than for
the transcribed regulatory regions identified by FANTOM
(Figure 6; e.g., mean ROC AUC = 0.66 vs. 0.86).

More than 25% of regions identified as Roadmap pro-
moters were identified as enhancers in other tissues. While
this potentially reflects the dynamic landscape of histone

marks and regulatory regions (Wu and Sun 2006; Riccio
2010), wewere concerned that the inclusion of these sequences
with dual activity may have confounded the classifier. Thus, we
repeated the training and evaluation, based on random subsets
of 4000 elements each from a filtered set of nonoverlapping
enhancers and promoters. Performance did not improve (Figure
6; mean ROC AUC = 0.64), which suggests that regulatory
regions as defined by histone mark combinations are less dis-
tinct from one another at the sequence level than those defined
by transcription patterns. However, similar to the results for
FANTOM regions, the 6-mer weights most indicative of pro-
moters were positively correlated with GC content (Spearman’s
r = 0.25, P , 2.2E216) and CpG content (Spearman’s r =
0.33, P , 2.2E216). This suggests that there are consistent
differences in sequence between enhancers and promoters, in-
cluding overall GC content and the importance of CGIs, but the
scale of the difference varies by the methodology used to iden-
tify the regions.

Figure 5 Broadly active promoters and enhancers have more TF-predicted binding sites. (A) The distributions of the proportion of binding sites for
broadly expressed TFs in each regulatory region (enhancers and promoters) contrasted between those with broad and narrow activity across tissues. The
horizontal line indicates the proportion of broad TFs overall. While all regions except for narrow enhancers are enriched for broad predicted TF-binding
sites (P , 2.2E216 for all), broadly active regulatory regions are significantly more enriched than narrowly active ones (P = 3.5E2289 for promoters and
P = 4.3E2179 for enhancers). (B) The most highly weighted DNA 6-mers by the SVMs for distinguishing broadly active promoters from narrowly active
promoters match different sets of TFs. Sequence patterns predictive of broadly active promoters are enriched for similarity to broadly active TF motifs
(blue), in particular ETS family members (CCGGAA, CGGAAG, and GGCGGA). (C) Same as (B), but for SVMs trained to distinguish broadly active
enhancers from narrowly active enhancers. In contrast to promoters, patterns predictive of broadly active enhancers are not enriched for broadly
expressed TFs and show a preference for AP-1 complex components. Similarity is quantified as the –log10 of the 6-mer–TF motif match P-value (gray line:
P = 0.05). The box plots show the median and first/third quartiles, and outliers were not plotted. *P , 0.05, Wilcoxon rank sum test. TF-binding motifs
were taken from HOCOMOCO; results were similar for motifs from the JASPAR database (Figures S11–S13). SVM, support vector machine; TF,
transcription factor.
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Discussion

We investigated similarities and differences in the sequence
determinants of promoters, enhancers, and their activity
levels. An SVM classifier trained on short DNA sequence
patterns was able to distinguish between transcribed en-
hancers and promoters with high accuracy (ROC AUC =
0.86), indicating that there are substantial sequence differ-
ences between the two groups in aggregate. Nonetheless,
there are similarities in the determinants of the breadth of
promoter and enhancer activity; classifiers trained to recog-
nize broadly active enhancers were able to identify broadly
active promoters as accurately as classifiers trained on
broadly active promoters. However, the reversewas not true;
promoter-trained classifiers could not distinguish broadly
active enhancers. This further suggests that broadly active
enhancers exhibit different sequence patterns than pro-
moters, and that theymay have greater sequence complexity
that includes promoter-like patterns. Indeed, some en-
hancers are known to have weak promoter activity
(Kowalczyk et al. 2012). It is possible that this could have
been influenced by the greater variability in length of the
FANTOM enhancers, which could thereby alter the amount
of regulatory relevance of our final regions. It is also possible
that the promoters are easier for the SVMs to distinguish
from the negative sets we considered, and this could also
influence their generalization. However, the worse general-
ization of the promoter classifiers held in each analysis (us-
ing genomic background, GC-matched background, and
tissue-specific activity regions as negatives). There are also
differences in the TF-binding motifs associated with the
highest-weighted sequence patterns in the enhancer and
promoter classifiers. Sequences characteristic of broadly ac-
tive promoters were more similar to binding motifs for
broadly active TFs, in particular ETS family members, while
sequences matching motifs for both broad and context-specific
TFs, such as components of the AP-1 complex like JUN and

FOS, contribute to broad enhancer activity. These TF mo-
tif patterns also reflect the more general sequence differ-
ences between promoters and enhancers.

Our findings are consistent with a model in which pro-
moters often achieve broad activity by binding broadly
expressed TFs, while enhancers obtain broad activity using
combinationsofbothbroadandcontext-specificTFs.TheAP-1
family members associated with enhancers have many con-
text-specific binding partnerswith similar bindingmotifs, and
theseTFs influence the enhancermotif similarity distributions
toward context-specific TFs. AP-1 factors are broadly active in
general, but the complex is often made up of context-specific
components that are involved inmore tissue-specific processes
such as differentiation (Angel and Karin 1991; Karin et al.
1997). Furthermore, most members of the ETS TF family,
which is enriched among high-weight promoter 6-mers, are
involved in processes relevant to all cells like cell growth and
apoptosis (Oikawa and Yamada 2003).

A recent MPRA-based study of the enhancer and promoter
activity of short sequences bound by CREBBP in cortical
neurons observed many similar patterns in sequences with
enhancer vs. promoter activity (Nguyen et al. 2016). For ex-
ample, they found that elevated CpG content is more strongly
associated with promoter activity than enhancer activity.
They also concluded that there are significant differences be-
tween enhancers and promoters driven by binding of specific
TFs. There was considerable agreement in the TFs that they
found to be characteristic of promoters (e.g., ELK and RFX
family members) and enhancers (AP-1), with the sequence
patterns given high weights by our machine learning models.
Our findings also broadly agree with TFs identified as impor-
tant to regulatory activity in several other MPRA studies that
did not directly compare enhancers and promoters (Ernst
et al. 2016; Klein et al. 2018). This argues that these are
general patterns that apply across cellular contexts and
tissues.

Figure 6 Enhancers and promoters defined
by histone marks (H3K27ac with or without
H3K4me1) from the Roadmap Epigenomics
Project are less distinguishable by short se-
quence patterns than those defined by tran-
scription patterns by FANTOM. (A) ROC
curves and (B) PR curves evaluating SVM
classifiers trained to distinguish promoters
from enhancers using patterns of 6-mers as
features. Plots show the mean, maximum,
and minimum curves obtained from classi-
fiers trained and evaluated on nine unique
subsets of 4000 promoters and enhancers
from the full data sets. The two curves on
each plot represent an analysis of all en-
hancers and promoters, or a set with regions
that have enhancer activity in some cellular
contexts and promoter activity in others re-

moved. Promoters and enhancers identified by bidirectional transcription via cap analysis of gene expression assays were much easier to distinguish from
sequence patterns (Figure 1, A and B). AUC, area under the curve; PR, precision recall; ROC, receiver operator characteristic; SVM, support vector
machine.
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There are a few caveats to consider when interpreting
our results. We defined enhancers and promoters based on
CAGE assays; however, there are many other strategies for
identifying regulatory regions,which can alter the scientific
conclusions drawn (Benton et al. 2018; Klein et al. 2018;
Halfon 2019). We attempted to replicate our results using
histone mark-defined regulatory regions, and found that
sequence-based differences between enhancers and pro-
moters were much less profound for these regions. This
is despite the fact that our findings are corroborated by
recent MPRA studies of enhancers and promoters
(Nguyen et al. 2016). Furthermore, in a previous study of
CAGE-defined enhancers, we found similar sequence pat-
terns to be predictive of activity in enhancers defined by
histone marks and DNase hypersensitivity (Colbran et al.
2017). We did not consider DNase hypersensitivity here, so
it is possible that this would increase the ability to distin-
guish histone mark-defined enhancers and promoters.
Overall, this suggests differences in the classification and
sequence properties of regulatory regions depending on
how they are identified, and it emphasizes the need for
more accurate models of gene regulatory elements and
their architectures.

Another limitation of our study is that several analyses
focus on the extremes of the enhancer and promoter activity
distributions. This approach enabled us to detect stark
sequence-level differences, and we found that our results
are robust to the specific threshold used to define broad
and narrow activity (Figure S2). However, more work will
be needed to map sequence patterns and dynamics of regions
with intermediate levels of activity.

Overall, promoters and enhancers share many similar
characteristics. For example, the most broadly active en-
hancers often contain CGIs and have characteristic 6-mers
similar to broadly active TFs. These enhancers resemble
promoters at the sequence level, and it is possible that many
of them also have promoter activity. However, most en-
hancers do not exhibit the strong relationship between
CpG count and activity seen in promoters, and they generally
contain binding sites for different sets of TFs. Thus, while
some enhancers are very promoter-like, and vice versa, most
display distinct sequence properties.
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