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Topologically associating domain boundaries
that are stable across diverse cell types are
evolutionarily constrained and enriched for heritability
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Summary
Topologically associating domains (TADs) are fundamental units of three-dimensional (3D) nuclear organization. The regions bordering

TADs—TAD boundaries—contribute to the regulation of gene expression by restricting interactions of cis-regulatory sequences to their

target genes. TAD and TAD-boundary disruption have been implicated in rare-disease pathogenesis; however, we have a limited frame-

work for integrating TADs and their variation across cell types into the interpretation of common-trait-associated variants. Here, we

investigate an attribute of 3D genome architecture—the stability of TAD boundaries across cell types—and demonstrate its relevance

to understanding how genetic variation in TADs contributes to complex disease. By synthesizing TAD maps across 37 diverse cell types

with 41 genome-wide association studies (GWASs), we investigate the differences in disease association and evolutionary pressure on

variation in TADs versus TAD boundaries. We demonstrate that genetic variation in TAD boundaries contributes more to complex-trait

heritability, especially for immunologic, hematologic, and metabolic traits. We also show that TAD boundaries are more evolutionarily

constrained than TADs. Next, stratifying boundaries by their stability across cell types, we find substantial variation. Compared to

boundaries unique to a specific cell type, boundaries stable across cell types are further enriched for complex-trait heritability, evolu-

tionary constraint, CTCF binding, and housekeeping genes. Thus, considering TAD boundary stability across cell types provides valuable

context for understanding the genome’s functional landscape and enabling variant interpretation that takes 3D structure into account.
Introduction

The three-dimensional (3D) conformation of the genome

facilitates the regulation of gene expression.1–4 Using chro-

mosome-conformation-capture technologies (3C, 4C, 5C,

Hi-C),5–7 recent studies have demonstrated that modula-

tion of gene expression via 3D chromatin structure is

important for many physiologic and pathologic cellular

functions, including cell-type identity, cellular differentia-

tion, and risk for multiple rare diseases and cancer.8–14

Nonetheless, many fundamental questions about the

functions of and evolutionary constraints on 3D genome

architecture remain. For example, how does genetic varia-

tion in different 3D contexts contribute to the risk of com-

mon complex disease? Furthermore, disease-causing regu-

latory variation is known to be tissue-specific; however,

only recently has there been characterization of 3D-struc-

ture variation across multiple cell types and individ-

uals.13,15,16 Understanding how different attributes of 3D

genome architecture influence disease risk in a cell-type-

specific manner is crucial for interpreting human variation

and, ultimately, moving from disease associations to an

understanding of disease mechanisms.17

3D genome organization can be characterized at

different scales. Globally, chromosomes exist in discrete

territories in the cell nucleus.7 On a sub-chromosomal

scale, chromatin physically compartmentalizes into topo-
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logically associating domains (TADs). TADs are megabase-

scale genomic regions that self-interact but rarely contact

regions outside the domain (Figure 1A).7,18–20 They are

formed and maintained through interactions between

CTCF zinc-finger transcription factors and cohesin ring-

shaped complexes, among other proteins both known

and unknown.7,21 TADs are identified based on regions

of enriched contact density in Hi-C maps (Figure 1A).

TADs modulate gene regulation by limiting interactions

of cis-regulatory sequences to target genes.7 The extent

to which chromatin 3D topology affects gene expression

is still debated.22 In extensively rearranged Drosophila bal-

ancer chromosomes, few genes had expression changes.23

In contrast, subtle chromatin interaction changes in

induced pluripotent stem cells (iPSCs) from seven related

individuals were associated with proportionally large dif-

ferential gene expression.24 Thus, further cell-type-specific

investigation into properties of TAD organization and

disruption will need to clarify which parts of the genome

are sensitive to changes in 3D structure and how these

changes influence gene regulation and traits.

At the highest level, TAD organization can be divided

into two basic features: the TAD and the TAD boundary.

TADs are the self-associating, loop-like domains that

contain interacting cis-regulatory elements and target

genes. TAD boundaries—regions in between TADs—are in-

sulatory elements that restrict interactions of cis-regulatory
, TN 37235, USA; 2Department of Biological Sciences, Vanderbilt University,

iversity of California, San Francisco, CA, 94158; 4Bakar Institute for Compu-

n Journal of Human Genetics 108, 269–283, February 4, 2021 269

mailto:tony.capra@ucsf.edu
https://doi.org/10.1016/j.ajhg.2021.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2021.01.001&domain=pdf


A

B

Figure 1. Schematic depiction of our analyses of 3D chromatin
TAD-boundary stability and function
(A) Chromatin is organized in 3D space into topologically associ-
ating domains (TADs), which are identified by Hi-C experiments.
Regions within a TAD are much more likely to interact with one
another than are regions outside of the TAD. Regions bordering
TADs are TAD boundaries. Boxes with right-angled arrows repre-
sent genes, and stars represent gene regulatory elements, such as
enhancers.
(B) This work addresses twomain questions: (1) How are complex-
trait heritability and evolutionary sequence conservation parti-
tioned between TADs and TAD boundaries? (2) Do stable TAD
boundaries (i.e., those observed across multiple tissues) have
different contributions to trait heritability or sequence conserva-
tion than TAD boundaries unique to specific tissues?
sequences, such as enhancers, to target genes.7 Previous

work suggests the functional importance of maintaining

both the self-associating TADs and the insulatory bound-

aries. For example, in cross-species multiple sequence

alignments, syntenic break enrichment at TAD boundaries

suggests a long-term evolutionary preference for rearrange-

ments that ‘‘shuffle’’ intact TADs, rather than ‘‘break’’

them.25,26 Additionally, 3D genome structure correlates

with similar functional features, such as histone modifica-

tions and replication timing, across species.27 TADs also

often contain clusters of co-regulated genes—e.g., cyto-

chrome genes and olfactory receptors.7,19,28 Intra-TAD

structural variation that deletes or duplicates enhancers

has been implicated in polydactyly, B cell lymphoma,

and aniridia.29 Together, these data suggest that the

genome is under pressure to preserve TADs as functional

units.
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Other evidence suggests the greater importance of main-

taining TAD boundaries. TAD boundaries are enriched

for housekeeping genes and transcription start sites.7,18

Removing insulatory TAD boundaries leads to ectopic

gene expression in cultured cells and in vivo. For example,

TAD structure disruption at the EPHA4 locus leads to inap-

propriate rewiring of developmental genes implicated in

limb-formation defects.7,29,30 In cancer, large structural al-

terations that disrupt TAD boundaries cause pathogenic

gene expression in acute myeloid leukemia (AML) and me-

dulloblastoma.31,32 Structural variation (SV) that disrupts

TAD boundaries causes gain-of-function, loss-of-function,

and misexpression in many forms of rare neurodevelop-

mental disease.29 Accordingly, TAD boundaries and CTCF

sites have evidence of purifying selection on SVs.33,34

Finally, human haplotype breakpoints do not align with

chromatin boundaries, which indicates that recombina-

tion might be deleterious at TAD boundaries.35 Collec-

tively, these findings suggest that TAD boundaries are

functionally important and constrained, especially on

the scale of human evolution.

In addition to the need for further characterization of the

constraint on and functions of TADs versus TAD bound-

aries, there is also a gap in our understanding of the vari-

ability in TAD organization across cell types. TADs and

TAD boundaries have been characterized as largely

invariant across cell types18,19,36–38 and species.7,18,26,39,40

However, previous pairwise comparisons of five 3D maps

suggest that 30%–50% of TADs differ across cell types.37,41

More comprehensive recent investigations have observed

large differences in the percent of boundaries not shared

across cell lines (20%–80%), which contrasts with previous

claims of extensive TAD conservation.42,43 Boundaries

shared across two cell types have evidence of stronger

SV purifying selection than boundaries unique to a cell

type, suggesting that shared boundaries are more intolerant

of disruption.33 Additionally, stratifying boundaries by

their strength (in a single cell type) facilitated discovery

that greater CTCF binding confers stronger insulation and

that super-enhancers are preferentially insulated by the

strongest boundaries.44 Stratifying by hierarchical proper-

ties of TADs—TADs often have sub-TADs—demonstrated

that boundaries flanking higher-level structures are en-

riched for CTCF, active epigenetic states, and higher gene

expression.45

Despite these preliminary indications that the stability

of components of the 3D architecture might influence

functional constraint, there has been no comprehensive

analysis comparing genomic features and disease associa-

tions between 3D structural elements stable across multi-

ple cell types and those that are unique to single cell types.

Quantifying stability across cell types is important for

interpreting new variation within the context of the 3D

genome given our knowledge that disease-associated regu-

latory variation is often tissue-specific.13,15,16

To investigate differences in TAD boundaries across cell

types, we quantify boundary ‘‘stability’’ as the number of
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tissues that share a TAD boundary. If a TAD boundary is

found in many tissues, it is ‘‘stable,’’ whereas if it is found

in few tissues, it is ‘‘unique’’ (Figure 1B). Using this charac-

terization, we address two main questions that aim to

expand our framework for cell-type-aware interpretation

of genetic variation and disease associations in the context

of the 3D genome (Figure 1B):

1. How do TADs and TAD boundaries differ in their

contribution to complex-trait heritability and their

evolutionary constraint?

2. Are there functional and evolutionary differences in

TAD boundaries that are stable across multiple cell

types versus TAD boundaries that are unique to spe-

cific tissues?

Synthesizing 3D genome maps across 37 diverse cell

types with multiple functional annotations and genome-

wide association studies (GWASs), we show that TAD

boundaries are more enriched for heritability of common

complex traits and more evolutionarily conserved than

TADs. Furthermore, genetic variation in TAD boundaries

stable across multiple cell types contributes more to the

heritability of immunologic, hematologic, and metabolic

traits than variation in TAD boundaries unique to a single

cell type. Finally, these cell-type-stable TAD boundaries are

also more evolutionarily constrained and enriched for

functional elements. Together, our work suggests that

TAD boundary stability across cell types provides valuable

context for understanding the genome’s functional land-

scape and enabling variant interpretation that accounts

for genome 3D structure
Methods

We examine heritability and functional annotation enrichment

across the 3D genome landscape in twoways: (1) across the genome

in windows centered and scaled around each TAD and (2) in fixed-

size TAD boundaries defined with varying resolution (40–200 kb) at

the ends of each TAD. We then characterize the stability of TAD

boundaries across diverse cellular contexts. By splitting boundaries

into quartiles of stability—from those unique to a single tissue to

those shared across many tissues—we test whether there is a rela-

tionship between boundary stability and annotation enrichment.

The annotations considered include contribution to complex trait

heritability enrichment, base-pair-level evolutionary constraint,

CTCF binding, and genic content. We demonstrate the robustness

of our results by using multiple definitions of TAD boundaries,

TADs called by a variety of methods, and different measurements

of the annotations investigated to replicate our experiments.

Defining TADs
TAD maps for 37 different cell types were obtained from the 3D

genome browser (Table S1).46 All TAD maps were systematically

predicted from Hi-C data with the hidden Markov model (HMM)

pipeline from Dixon et al.18,36,46 The maps were defined with

respect to the same 40 kb windows, except in the case of seven

cell types (GM12878, HMEC, HUVEC, IMR90, K562, KBM7, and
The America
NHEK) that were defined with respect to 25 kb windows. For

details about the length and number of TADs per map, see

supplemental information.

Quantifying partitioned heritability with S-LDSC
We conducted partitioned heritability by using stratified-LD Score

Regression v1.0.1 (S-LDSC) to test whether an annotation of inter-

est (e.g., TADs or TAD boundaries) is enriched for heritability of a

trait.47,48 We considered GWAS summary statistics from a previ-

ously described representative set of 41 diseases and complex traits

(average n¼ 329,378, M¼ 1,155,239, h2
SNP ¼ 0.19, Table S2).49–59

Previous studies using these traits had GWAS replicates (genetic

correlation > 0.9) for six traits (BMI, height, high cholesterol,

type 2 diabetes, smoking status, years of education). For these,

we considered only the GWAS with the largest sample size. All

GWASs involved subjects of European ancestry only. We used

1000 Genomes for the LD reference panel60 and HapMap Project

Phase 3 (HapMap 3)61 excluding the MHC region to estimate her-

itability enrichment and standardized effect size. Heritability was

estimated from common variants with minor-allele frequency

(MAF) > 0.05, and standard errors were computed by LDSC via a

block-jackknife.

Heritability enrichment

S-LDSC estimates the heritability enrichment, defined as the pro-

portion of heritability explained by single-nucleotide polymor-

phisms (SNPs) in the annotation divided by the proportion of

SNPs in the annotation. The enrichment of annotation c is esti-

mated as

Enrichmentc ¼ %h2ðcÞ
%SNPðcÞ

¼ h2ðcÞ
�
h2

jcj=M ;

where h2(c) is the heritability explained by common SNPs in

annotation c, h2 is the heritability explained by the common

SNPs over the whole genome, |c | is the number of common SNPs

that lie in the annotation, and M is the number of common SNPs

considered over the genome.48,50 To investigate trends across all

traits, we computed the average heritability enrichment and a

confidence interval. When compared to meta-analysis using a

random-effects model conducted with Rmeta,48,50,62,63 the trends

are consistent (Figure S1); therefore, we report results based on

averaging to simplify interpretation and reduce over-representation

of higher-powered GWAS traits.

Standardized effect size

In contrast to heritability enrichment, the standardized effect

size (t*c) quantifies effects that are unique to the focal annotation

compared to a set of other annotations.50,64 The estimate of t*c is

conditioned on 86 diverse annotations from the baseline v. 2.1

model; these include coding, UTR, promoter and intronic re-

gions, histone marks (H3K4me1, H3K4me3, H3K9ac, and

H3K27ac), DNase I hypersensitivity sites (DHSs), chromHMM

and Segway predictions, super-enhancers, FANTOM5 enhancers,

GERP annotations, MAF bins, LD relation, and conservation

annotations.48,64,65

Heritability enrichment across the TAD landscape
We partitioned the genome with respect to TAD annotations by

using two different strategies. In the first, motivated by Krefting

et al.,25 we considered TADs plus 50% of their total length flanking

each side and subdivided these into 20 equal-sized partitions.

Hence, the center 10 bins (6–15) are inside the TAD. Bins 1–5 are

upstream of the TAD, and 16–20 are downstream of the TAD. In
n Journal of Human Genetics 108, 269–283, February 4, 2021 271



cases where a TAD is adjacent to another TAD, the 5 50% region

flanking the TAD (bins 1–5 and 16–20) often partially extends into

a neighboring TAD (Figure S2A). However, the5 50% flanking re-

gion extends into the center of a neighboring TAD less than 20%

of the time (Figure S2B). We ran S-LDSR on these 20 bins across

TAD maps from 37 cell types to calculate heritability enrichment

over 41 traits. We investigated the heritability enrichment (or

depletion) trends averaged across all traits and cell types, by cell

type, and by trait. Second, we analyzed heritability in fixed-size

TAD boundary windows of 40, 100, and 200 kb (see subsection

on TAD stability below).

For the analyses by cell type and by trait, we clustered the heri-

tability landscapes to determine whether related cell types or

related traits had similar patterns of heritability across the 3D

genome. To do so, correlation distance was used as the distance

metric with average linkage clustering. When clustering traits by

their heritability landscape across the 3D genome, we identified

two agglomerative clusters and termed these ‘‘boundary enriched’’

and ‘‘boundary depleted.’’

Evaluating robustness on other TAD callers

To assess the influence of technical variation of TAD calling on our

findings, we assessed the heritability patterns in human embry-

onic stem cells across TADs called by seven diverse methods

(Armatus, Arrowhead, DomainCaller, HiCseg, TADbit, TADtree,

and TopDom). The TADs were called and published by Dali

et al.66 with Hi-C from Dixon et al.36
Sequence-level conservation across the TAD landscape
We considered PhastCons element overlap and score to quantify

evolutionary constraint across the TAD landscape. Other re-

searchers previously determined PhastCons elements by fitting a

phylo-HMM across a group of 46 vertebrate genomes to predict

conserved elements.67 We downloaded these conserved element

loci from the UCSC table browser.68,69 Each element has a score

describing its level of conservation (a transformed log-odds score

between 0 and 1000). We intersected the PhastCons elements

with regions of interest (e.g., TAD boundaries) across the TAD

landscape. Across each region, we quantified the number of Phast-

Cons base pairs (regardless of score) and the average PhastCons

element score.

Evolutionary constraint in TADs versus boundary windows

To specifically measure the constraint in TAD boundaries versus

TADs, we investigated base-pair-level conservation at 100 kb

TAD boundaries (below) and matched randomly shuffled equally

sized windows in TADs. For the windows in TADs, we shuffled

the 100 kb boundaries for each of the 37 cell types three times

and required them to fall inside TADs (n ¼ 111). For both

the TAD boundaries and TAD set, we calculated overlap

with conserved (PhastCons) elements. To investigate whether

conserved element overlap is influenced by the density of CTCF

binding and exons, we repeated this analysis after subtracting ba-

ses (from both the boundaries and TAD windows) overlapping

CTCF ChIP-seq peaks or exons.
Quantifying boundary overlap and stability
For each cell type, we defined a set of boundaries with regard to the

same windows across the genome.

100 kb boundaries

We defined 100 kb boundaries (results shown in main text) as

regions 100 kb upstream of the TAD start and 100 kb downstream

of the TAD end. For example, if a TAD was at chr1: 2,000,000–
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3,000,000, we would define its TAD boundaries to be at

chr1:1,900,000–2,000,000 (boundary around the start) and chr1:

3,000,000–3,100,000 (boundary around the end). To quantify sta-

bility, we examined each 100 kb window across the genome. We

removed boundaries that had any overlap with genomic gaps

(centromeric/telomeric repeats from UCSC table browser).68,69 If

there was a TAD boundary in the window for any of the cell types,

we counted how many cell types (out of 37) shared the boundary.

If only one cell type had a boundary at that location, it was consid-

ered a ‘‘unique’’ boundary, whereas if it was observed in many cell

types, it was considered ‘‘stable.’’ These boundaries were divided

into quartiles of cell-type-stability.

40 kb and 200 kb bookend boundaries

To test whether our results were robust to different resolutions of

boundary definitions, we defined 40 kb and 200 kb bookend

boundaries (see results in Supplemental Information). 40 kb

boundaries are 40 kb windows surrounding (520 kb) TAD start

and stop sites. For example, if a TAD was located at chr1:

2,000,000–3,000,000, we would define its TAD boundaries to be

at chr1: 1,980,000–2,020,000 and chr1: 2,980,000-3,020,000.

200 kb bookend boundaries are 200 kb upstream of the TAD start

and 200 kb downstream of the TAD end. For example, if a TAD

was at chr1: 2,000,000–3,000,000, we would define its TAD

boundaries to be at chr1: 1,800,000–2,000,000 and chr1:

3,000,000–3,200,000. We removed boundaries that had any over-

lap with genomic gaps.68,69 Both sets of boundaries were divided

into quartiles of cell-type-stability.

Boundaries distant from genomic gap or blacklist regions

To investigate whether boundaries near genome assembly gaps or

repetitive sequences affect the relationship between annotation

enrichment and stability quartile, we defined a very conservative

set of 100 kb TAD boundaries by excluding those within 5 Mb of

a genomic gap (UCSC table browser68,69) or blacklist region

(Amemiya et al.70).

Germ-layer-informed boundary-stability measure

Of the 37 cell types considered, some are more closely related than

others, therefore we grouped 34 of them by germ-layer origin

(endoderm [n ¼ 12], mesoderm [n ¼ 13], ectoderm [n ¼ 9]; Table

S1). Germ layers for each of the cell types were defined via

ENCODE documentation of common cell types.71,72 Embryonic

stem cell, mesendoderm, and trophoblast were omitted because

they have no single germ-layer classification. We defined a mea-

surement of stability on the basis of whether each 100 kb bound-

ary (above) was found in cells from one, two, or all three germ

layers.
Quantifying TAD boundary similarity across cell types
To quantify TAD boundary similarity between two cell types, we

calculate the Jaccard similarity coefficient by counting the number

of shared boundaries (intersection) and dividing by the total

boundaries over both tissues (union). For the TAD boundary sim-

ilarity heatmaps, we clustered the cell types by using complete

linkage (i.e., farthest neighbor) with the Jaccard distance

(1-stability).
Heritability and annotation enrichment by TAD

boundary stability
Complex-trait heritability

S-LDSCwas conducted on each quartile of stability for all 41 traits.

Partitions for each quartile include TAD boundaries of that stabil-

ity (see above). We computed a linear regression on log-scaled
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enrichment values by regressing log10(heritability enrichment)

on quartile of stability. by regressing log10(heritability enrich-

ment) on quartile of stability.

Evolutionary constraint

Evolutionary constraint was quantified by PhastCons67 as

described above. The PhastCons elements were intersected with

the TAD boundaries, partitioned by stability. The two overlap

quantifications are the number of PhastCons base pairs per bound-

ary regardless of score (base pairs per boundary) and the average

PhastCons element score per boundary (average score of elements

in the boundary).

CTCF enrichment

CTCF binding sites were determined through ChIP-seq analyses

from ENCODE.71,72 We downloaded all CTCF ChIP-seq data

with the following criteria: experiment, released, ChIP-seq, hu-

man (hg19), all tissues, adult, BED NarrowPeak file format. We

excluded any experiments with biosample treatments. Across all

files, the CTCF peaks were concatenated, sorted, and merged

into a single file; thus, overlapping peaks weremerged into a single

larger peak.We quantified the number of CTCF ChIP-seq peaks per

TAD boundary (peaks per boundary) and the number of CTCF

peak base pairs overlapping each boundary (base pairs per

boundary).

Genes and protein-coding genes

RefSeq genes were downloaded from the UCSC table browser68,69,73

and filtered to include coordinates of only one transcript per

gene (the longest) and only autosomal and sex chromosome

genes. From the simplified list of RefSeq genes, a subset of pro-

tein-coding genes was also created (these were identified on the ba-

sis of RefSeq accession numbers starting with NM). The simplified

RefSeq gene list contains 27,090 genes. The simplified protein-cod-

ing RefSeq gene list contains 19,225 genes.We quantified the num-

ber of genes or protein-coding genes per TAD boundary stratified by

boundary stability.

Housekeeping genes

Housekeeping genes (N ¼ 3804) are from Eisenberg & Levanon

(2013).74 We retrieved the coordinates by intersecting with the

RefSeq genes (above), resulting in coordinates for 3681 genes

(coordinates for a small number of genes were not found in the

RefSeq list).68,69,73 We quantified the number of housekeeping

genes or protein-coding genes per TAD boundary stratified by

boundary stability.
Defining GWAS phenotypic classes
To determine whether similar traits had similar heritability pat-

terns across the 3D genome, we defined eight different pheno-

typic classes (Table S2): cardiopulmonary (n ¼ 4), dermatologic

(n ¼ 7), hematologic (n ¼ 5), immunologic (n ¼ 4), metabolic

(n ¼ 7), neuropsychiatric (n ¼ 8), reproductive (n ¼ 4), and skel-

etal (n ¼ 2). Our clusters originated from domains in the GWAS

Atlas;75 however, the categories were modified to place more

emphasis on disease pathophysiology instead of organ system

(e.g., Crohn disease and Rheumatoid Arthritis were moved

from the gastrointestinal and connective-tissue categories,

respectively, to an immunologic category). Similar categories

were also combined (e.g., metabolic and endocrine, cardiovascu-

lar and respiratory).
Data analysis and figure generation
All analyses were conducted with the hg19 genome build. Inter-

sections of genomic regions were computed with the pybedtools
The America
wrapper for BedTools.76,77 Data and statistical analyses were con-

ducted in Python 3.5.4 (Anaconda distribution) and R 3.6.1.

Figure generation was aided by Matplotlib, Seaborn, and Ink-

scape.78–80 This work was conducted in part with the resources

of the Advanced Computing Center for Research and Education

(ACCRE) at Vanderbilt University, Nashville, TN.
Results

Estimating complex-trait heritability across the 3D

genome landscape

Disruption of 3D genome architecture plays a role in rare

disease and cancer; however, the contribution of common

variation in different 3D contexts to common phenotypes

is unknown. To investigate complex-trait heritability pat-

terns across the 3D genome landscape, we use 37 TAD

maps from the 3D Genome Browser (Table S1).46 The

cellular contexts include primary tissues, stem cells, and

cancer cell lines;36–38,71,72,81,82 for simplicity, we will refer

to these as ‘‘cell types.’’ All TAD maps were systematically

predicted from Hi-C data with the HMM pipeline from

Dixon et al.18 at either 40 kb or 25 kb resolution (Supple-

mental Information).46

We estimated common-trait heritability enrichment

among common variants within these 3D genome annota-

tions by using stratified-LD score regression (S-LDSC).47,48

S-LDSC is a method of partitioning heritability across the

genome by using GWAS summary statistics and LD pat-

terns to test whether variants in an annotation of interest

(e.g., TADs or TAD boundaries) are enriched for heritability

of a trait in comparison to the rest of the genome. We

considered GWAS summary statistics from a previously

described representative set of 41 diseases and complex

traits.49–59

To investigate patterns of heritability across the 3D

genome landscape, we used two strategies for defining

genomic partitions. In the first, we analyzed TADs plus

50% of their length on each side. Motivated by the

approach to partitioning TADs from Krefting et al.,25 we

subdivided these regions into 20 equally sized partitions.

Bins 1–5 and 16–20 ‘‘bookend’’ the TAD, whereas the cen-

ter bins 6–15 are inside the TAD (see Methods). In addition

to characterizing heritability patterns in bins across the

TAD landscape, we also explicitly defined TAD boundary

windows as fixed-size (40 kb, 100 kb, or 200 kb) regions

bookending TADs. We conducted S-LDSC across the 37

cell types for the 41 traits to estimate the enrichment

(or depletion) of heritability for each trait across the 20 par-

titions over the TAD landscape and the 100 kb TAD

boundaries.

TAD boundaries are enriched for complex-trait

heritability and evolutionary sequence conservation

Regions flanking TADs are enriched for complex-trait her-

itability; whereas partitions in TADs are marginally

depleted for heritability overall (1.073 enrichment in

flanking regions versus 0.993 enrichment in TADs, p ¼
n Journal of Human Genetics 108, 269–283, February 4, 2021 273
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Figure 2. Regions flanking TADs are enriched for heritability of diverse common complex traits and evolutionary sequence
conservation
(A) Contribution to trait heritability (h2) is enriched across variation in TAD-flanking regions and in the center of TADs when averaged
across 41 common complex phenotypes and TADmaps from 37 cell types (p¼ 13 10�193). Enrichment was computedwithin 20 equally
sized bins centered on each TAD 5 50% of its length.
(B) Heritability patterns are consistent across the 3D genome landscape for 37 cell types.
(C) Regions flanking TADs have increased sequence-level constraint. They have a higher proportion of conserved bases (overlap with
PhastCons elements; p ¼ 5 3 10�11) (left blue axis) and a higher average conservation score across those overlapping PhastCons ele-
ments (right gray axis; p ¼ 3 3 10�29).
Error bands signify 99% confidence intervals. Trends are similar for fixed-size 100 kb TAD boundaries bookending TADs; TAD boundaries
are enriched for heritability (p ¼ 0.001, Figure S3) and conservation (p ¼ 3 3 10�29, Figure S4A).
1 3 10�193) (Figure 2A). We also observed enrichment in

regions flanking TADs when when we used the 100 kb

TAD boundary definition (1.073 background, p ¼ 0.001,

Figure S3). The results are consistent whether averaged

across traits or meta-analyzed with a random-

effects model48,50,62 (r2 ¼ 0.85, p ¼ 7 3 10�9, Figure S1);

therefore, further analyses of heritability across traits will

use averaging for simplicity and interpretability. There is

also a spike of heritability enrichment in the center of

TADs; we explore this further in a subsequent section.

The complex-trait heritability enrichment flanking TADs

is also consistent across cell types (Figure 2B). The heritabil-

ity enrichment values are significant but relatively small in

magnitude. This is expected in light of the large genomic

regions considered by this analysis—only a small fraction

of the base pairs in a boundary are likely to be functionally

relevant.

To assess functionality via a complementary approach,

we compared between-species sequence-level conservation

for TADs and boundaries. Regions flanking TADs are
274 The American Journal of Human Genetics 108, 269–283, Februar
more evolutionarily conserved than sequences in

TADs (Figure 2C). We quantified evolutionary conserva-

tion in terms of the proportion of base pairs in a region

in a conserved element identified by PhastCons elements

and by the average PhastCons element score across the

region. On average, 5.02% of regions flanking TADs

are overlapped by PhastCons elements, versus 4.97%

of TADs (p ¼ 5 3 10�11, Figure 2C). Furthermore, across

these PhastCons elements, regions flanking TADs have

average higher conservation scores than TADs (334 versus

331, p ¼ 3 3 10�29, Figure 2C). The 100 kb TAD boundary

set corroborates these results; 5.21% of bases in TAD

boundaries are conserved versus 4.91% in intra-TAD 100

kb windows (p¼ 3x10�29, Figure S4A). This supports previ-

ous findings underscoring the importance of maintaining

TAD boundaries.

The heritability enrichment and conservation at TAD

boundaries are most likely due to their known overlap

with functional elements such as CTCF binding sites

and genes. Many such elements are enriched for
y 4, 2021



heritability and conservation themselves.48 To assess

whether the heritability enrichment flanking TADs is

greater than expected given the known functional ele-

ments overlapping TAD boundaries, we calculated stan-

dardized enrichment effect sizes (t*).50,64 This statistic

quantifies heritability unique to the focal annotation

by conditioning on a broad set of 86 gene regulatory,

evolutionary, gene, allele frequency, and LD-based anno-

tations (baseline v2.1).48,50,64,65 TAD boundaries did not

show more heritability than expected on the basis of

their enrichment for the 86 other annotations

(Figure S5). Similarly, to assess whether the greater evolu-

tionary conservation flanking TADs is the result of the

known enrichment in functional elements, we evaluated

the conservation of bases in 100 kb boundaries and

matched intra-TAD windows that do not overlap CTCF

ChIP-seq peaks or exons. Filtering the base pairs that

overlap CTCF peaks, we found that TAD boundaries still

overlap more PhastCons elements and have a higher

average PhastCons element score than windows in

TADs (Figure S4). When removing all exonic base pairs,

we found that TAD boundaries have less overlap with

PhastCons elements than do windows in TADs. However,

the conserved non-exonic regions of TAD boundaries

have higher conservation scores than conserved non-

exonic regions in TADs (Figure S4). Thus, existing anno-

tations probably capture most of the relevant functional

elements (e.g., CTCF, genes, and other regulatory

element-binding sites) that determine and maintain

boundary function.

TAD boundaries vary in stability across cellular contexts

The heritability enrichment patterns we observed are

similar across cell types, and TADs have been characterized

as largely invariant across cell types.18,19,36–38 However, pre-

vious work suggests distinct functional properties among

TAD boundaries with different insulatory strengths, hierar-

chical structures, and cell types.33,44,45 Thus, we hypothe-

sized that the stability of TAD boundaries across cell types

would be informative about their functional roles and con-

servation. To characterize the stability of TAD boundaries

across diverse cellular contexts, we focused on the 100 kb

bookended TAD boundaries (described above), since these

can be directly compared across the 37 cell types. The

maps for each cell type are defined with respect to the

same 100 kb windows across the genome, so we identify

shared, or ‘‘stable,’’ boundaries on the basis of these 100

kb windows (Figure 3A). Our results are robust to different

definitions of TAD boundaries, including 40 kb windows

surrounding (520 kb) TAD start and stop sites (‘‘40 kb

boundaries’’) and 200 kb windows flanking the TAD start

and stop sites (‘‘200 kb bookend boundaries’’) (see

Figure S6 and Methods).

Using the cross-cell-type TAD boundary intersection, we

found that boundaries vary substantially across cell types.

Less than 10% of TAD boundaries are shared in 25þ of the

37 cell types, and 22.6% of TAD boundaries are unique to a
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single cell type (Figure 3B). With the more granular 40 kb

boundaries, 33.9% of boundaries are unique to one tissue

(Figure S6A). Even with the permissive 200 kb resolution

boundaries, 18.3% of boundaries are unique to a single tis-

sue (Figure S6B). To quantify boundary stability for further

analyses, we bin boundaries into their cell-type stability

quartile: boundaries present in only one context of 37

(cell-type unique) are in the first quartile of stability,

boundaries in 2–4 cell types are in the second quartile,

boundaries in 5–13 cell types are in the third quartile,

and boundaries in 14 or more of the 37 contexts are the

fourth quartile of cell type stability (Figure 3B, examples

in Figure 3A).

Although there is high variability in the landscape of

TAD boundaries across different cell types, we found that

biologically similar cell types have more similar TAD

boundary maps. For example, cell type classes (e.g., organ

or tissue, stem cell, and cancer) generally cluster together.

The two neuroblastoma cell lines cluster together, as do

left ventricle, right ventricle, aorta, and skeletal muscle

(Figure S7B). This trend of biologically similar clusters

also held at the 40 kb and 200 kb boundary resolution (Fig-

ures S7A and S7C). Previous studies have found contrasting

results about the level and patterns of similarity across cell

types (Supplemental Information), but our similarity

quantifications between cell types agree with some previ-

ous estimates.13,37,42

In summary, although TADs and TAD boundaries have

been characterized as largely invariant across cell types,

we demonstrate that there is substantial variability be-

tween cell types.18,19,36–38 We also find that biologically

related cell types have more similar TAD maps, providing

preliminary evidence for the cell-type specificity of the

3D genome and providing further rationale for investi-

gating differences in TAD maps between cell types.

Stable TAD boundaries are enriched for complex-trait

heritability, evolutionary constraint, and functional

elements

When stratifying the 100 kb boundaries by their cell-type

stability we found a positive relationship between cell-

type-stability and trait-heritability enrichment (r2 ¼
0.045, p ¼ 0.006, Figure 3C). The most stable boundaries

(fourth quartile, darkest blue) have 1.073 enrichment of

trait heritability, as opposed to 0.963 enrichment in

unique boundaries (first quartile). This positive relation-

ship between heritability and boundary stability holds

at both the 40 kb and 200 kb resolution (Figures S8A

and S8D).

We also explored the relationship between TAD bound-

ary stability and other evolutionary and functional attri-

butes. Although TAD boundaries, when compared to

TADs, are enriched for CTCF binding,18,44 evidence of

evolutionary constraint (Figure 2C,33,35) and housekeeping

genes are enriched at TAD boundaries7,18 (compared to

TADs), it is unknown how these features relate to boundary

stability across cell types.
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Figure 3. Stable TAD boundaries are enriched for complex-trait heritability, evolutionary conservation, and functional elements
(A) Example TADmaps from 37 cell types (rows) for a 3.5 Mbwindow from human chromosome 1 (hg19). Each black line represents the
genomic extent of a TAD. Example boundaries of different stability quartiles are outlined in blue (quartile 1 [most cell-type unique] in the
darkest blue and quartile 4 [most cell-type stable] in light blue).
(B) Histogram of TAD boundaries by the number of cell types they are observed in (this quantifies their ‘‘stability,’’ colored by quartiles).
The right axis and gray distribution represent the empirical cumulative distribution function (CDF) of boundary stability shown in the
histogram.
(C–F) Across TAD-boundary stability quartiles, there is a correlation between increased cell-type stability and increased (C) complex-trait
heritability enrichment (p ¼ 0.006), (D) conserved bases (overlap with PhastCons elements, p ¼ 6 3 10�13), (E) CTCF binding (overlap
with ChIP-seq peaks, p ¼ 1 3 10�83), and (F) housekeeping genes (p ¼ 8 3 10�58). All error bars signify 95% confidence intervals. These
trends hold at different boundary definitions (40 kb and 200 kb), for germ-layer informed measures of cell type stability, and for other
measurements of conservation, CTCF binding, and gene overlap (Figures S9–S12).
We found that TAD boundary stability is positively

correlated with increased evolutionary sequence

constraint (Figure 3D, p ¼ 3 3 10�13); compared to cell-

type-unique TAD boundaries, boundaries in the highest

quartile of stability have an additional 527 base pairs of

overlap with PhastCons elements (5,420 versus 4,893

per 100 kb boundary). This extends previous observations

that investigated two cell types to show that shared

boundaries have evidence of stronger purifying selection

on structural variants than boundaries present in only

one of the cell types.33 On the basis of on our result, we

conclude that stable boundaries are more intolerant of

disruption, not only on the scale of structural variants,

but also at the base-pair level.

TAD boundary stability is also correlated with increased

CTCF binding (Figure 3E, p¼ 13 10�83). Boundaries in the

highest quartile of stability have 1.53 more CTCF sites on

average than TAD boundaries unique to one cell type

(6.1 versus 4.0). This aligns with previous findings that

boundary insulatory strength (in a single cell type) is
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positively associated with CTCF binding;18,44 however, it

expands this finding to stability across cell types.

Finally, we found that TAD boundary stability is corre-

lated with increased overlap with genes (1.563, Figures

S9A–S9C, p¼ 13 10�74), protein-coding genes (1.653, Fig-

ures S9D-F, p ¼ 7x10�90), and housekeeping genes (2.503,

Figures 3F, S9G-I, p¼ 83 10�58). Boundaries in the highest

quartile of stability overlap 2.53more housekeeping genes

than do cell-type-unique TAD boundaries (0.37 versus

0.15 per 100 kb boundary). The relationship between

stable TAD boundaries and housekeeping-gene enrich-

ment might result from many factors, including strong

enhancer-promoter interactions, specific transcription-fac-

tor binding, or chromatin insulation caused by highly

active sites of transcription.12

Motivated by the observation that closely related cell

types have more similar boundary maps (Figure S7) and

given the non-uniform sampling of cell types considered

here, we defined an additional measure of boundary sta-

bility based on cellular development. We determined the
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germ layer of origin (endoderm, mesoderm, ectoderm)

for each of the 37 cell types and stratified boundaries

on the basis of their presence across cells of different or-

igins. Consistent with our results based on the raw count

of cell types, boundaries observed in cell types from all

three germ layers are enriched for trait heritability,

conserved bases, CTCF binding, and housekeeping genes

in comparison to boundaries unique to one germ layer

(Figure S12). This shows that the greater contribution

to complex trait heritability for more stable boundaries

is probably robust to the sample of cell types considered.

Although our measure of TAD boundary stability corre-

lates highly with these functional annotations, we note

a slight drop-off in enrichment at the fourth quartile

(compared to the third quartile), especially for trait herita-

bility, conservation, and CTCF binding (Figures 3C–3E).

We identify two factors—one technical and one biolog-

ical—contributing to this. First, TADs must necessarily start

and stop at the edges of chromosomes, centromeres, and

gap regions; these regions will be identified as highly stable

TAD boundaries independent of their functional impor-

tance and constraint. When boundaries within 5 Mb of

genomic gaps68,69 or blacklist regions are removed,70 the

enrichment drop-off is diminished (Figure S13). Second,

the 37 cellular contexts considered are not uniformly

sampled; some are more closely related than others. Thus,

a boundary present in a well-sampled set of cell typesmight

appear more stable than a boundary present in less densely

sampled cell types. The germ-layer-based definition of sta-

bility has lower resolution but is less subject to sampling

biases. We do not observe a decrease in the enrichment

for heritability or other functional annotations among the

most stable set when we use the germ-layer stability scores

(Figure S12). Thus, it will be important in future work to

incorporate more detailed understanding of the develop-

mental relationships of the considered cell types into com-

parisons of TAD maps.

In summary, TAD boundaries stable across multiple cell

types are enriched for complex-trait heritability, evolu-

tionary constraint, CTCF binding, and housekeeping

genes. These trends hold at different boundary definitions

(40 kb and 200 kb), for germ-layer-informed measures of

cell type stability, and for other measurements of conserva-

tion, CTCF binding, and gene overlap (Figures S9–S12).

The heritability landscape across the 3D genome varies

across phenotypes

The previous analyses have shown that trait heritability is

generally enriched at TAD boundaries and further enriched

in boundaries stable across cell types. Given preliminary

evidence that different traits have unique enrichment

profiles among different functional annotations,48 we

hypothesized that variation in TAD boundaries might in-

fluence certain traits more than others. To investigate

trait-specific heritability across the TAD landscape, we

computed heritability enrichment profiles across the 3D

genome partitions by trait and hierarchically clustered
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them (Figure 4A). We observed two distinct trait clusters

(Figure 4A).

One cluster of traits (‘‘boundary-enriched’’ cluster) is

strongly enriched for complex-trait heritability at regions

flanking TADs (Figure 4B) and in the 100 kb TAD bound-

aries (Figure S3). Across TAD maps in 37 cell types, these

traits have on average 1.163 heritability enrichment at

100 kb TAD boundaries in comparison to genomic back-

ground (p ¼ 13 10�7, Figure S3). The other cluster of traits

(‘‘boundary-depleted’’ cluster) shows a weak inverted

pattern in comparison to the boundary-enriched cluster;

there is marginal heritability depletion at TAD boundaries

(0.973 enrichment, p ¼ 0.06, Figure S3) and a spike of her-

itability enrichment within the TAD center (Figure 4C).

The traits in the boundary-enriched cluster are predom-

inantly hematologic (e.g., counts of white and red blood

cells), immunologic (e.g., rheumatoid arthritis, Crohn dis-

ease), and metabolic traits (e.g., type 2 diabetes, lipid

counts) (Figure 4E). The traits in the boundary-depleted

cluster are mostly neuropsychiatric (e.g., schizophrenia,

years of education, Autism spectrum disorder) and derma-

tologic (e.g., skin color, balding) (Figure 4E). This stratifica-

tion of complex diseases into phenotypic classes does

not perfectly reflect the traits’ pathophysiology. For

example, some dermatologic traits fall into the bound-

ary-enriched cluster. However, these dermatologic traits,

such as eczema, also have a substantial immunologic and

hematologic basis, which is a hallmark of other traits in

the boundary-enriched cluster. Additionally, body mass

index (BMI) clustered with the psychiatric-predominant

boundary-depleted cluster instead of with other metabolic

traits in the boundary-enriched cluster. This is interesting

in light of previous findings that BMI heritability is en-

riched in central nervous system (CNS)-specific annota-

tions rather thanmetabolic-tissue (liver, adrenal, pancreas)

annotations.48 Skeletal, cardiopulmonary, and reproduc-

tive traits do not consistently segregate into one of

the clusters (Figure 4E). This is most likely because of the

small sample size and heterogeneity of traits in these

phenotypic classes.

The relationship between heritability enrichment in

TAD boundaries and the trait clusters is not confounded

by GWAS trait sample size (n), number of SNPs (M), or

the traits’ SNP-based heritability (h2
SNP) (Figure S14).

Despite using a diverse set of cell types, we recognize that

the heritability pattern differences between traits could

be affected by the representation of investigated cell types.

However, given that the pattern of heritability enrichment

is consistent across all cell types (Figure 2B), we are confi-

dent that no single cluster of cell types is driving the differ-

ences in heritability patterns between traits. Furthermore,

these patterns are maintained even when we call TADs

by a variety of computational methods (Armatus, Arrow-

head, DomainCaller, HiCseg, TADbit, TADtree, TopDom),

suggesting that the finding of immunologic and hemato-

logic heritability enrichment at TAD boundaries is robust

to technical variation (Figure S15).
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Figure 4. The heritability landscape across the 3D genome varies across phenotypes
(A) Trait heritability patterns across the 3D genome organize into two clusters. Some traits are strongly enriched for complex-trait her-
itability at TAD boundaries (‘‘boundary-enriched’’ cluster, purple), whereas others are weakly depleted at TAD boundaries and enriched
centrally within the TAD (‘‘boundary-depleted’’ cluster, green).
(B) Heritability enrichment landscape over TADs for traits in the boundary-enriched cluster (n ¼ 22). The gray lines represent the her-
itability pattern for each trait in the cluster; the purple line is the average over all the traits.
(C) Heritability enrichment landscape over TADs for traits in the boundary-depleted cluster (n¼ 19). The green line is the average over all
the traits.
(D) The positive correlation between boundary stability and trait heritability (Figure 3C) is driven by the subset of traits in the boundary-
enriched cluster (r2 ¼ 0.23, p ¼ 2 3 10�6).
(E) Odds of cluster membership across phenotype categories. The boundary-enriched cluster is predominantly hematologic, immuno-
logic, and metabolic traits. The boundary-depleted cluster is predominantly neuropsychiatric traits.
(F) There is a weak negative correlation between boundary stability and trait heritability for traits in the boundary-depleted cluster (r2 ¼
0.04, p ¼ 0.09).
Error bars signify 99% confidence intervals in (B) and (C) and 95% confidence intervals in (D) and (F).
Although analysis across all traits revealed a positive rela-

tionship between boundary cell-type-stability and herita-

bility enrichment (Figure 3C), we found that this trend is

driven by traits in the boundary-enriched cluster: they

have further heritability enrichment in cell-type-stable

boundaries (r2 ¼ 0.23, p ¼ 2 3 10�6, Figure 4D). The

most stable boundaries (fourth quartile) have 1.233

enrichment of trait heritability as compared to 0.933

enrichment in unique boundaries (first quartile). In

contrast, traits in the boundary-depleted cluster have a

non-significant negative relationship between stability

and heritability (r2 ¼ 0.04, p ¼ 0.09, Figure 4F). These

trends also hold when the germ-layer-informed measure-
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ment of boundary stability is used (Figures S12C and

S12D). Thus, boundary stability might be more relevant

when interpreting variation associated with hematologic,

immunologic, and metabolic traits.
Discussion

Although we are beginning to understand the role of 3D

genome disruption in rare disease and cancer, we have a

limited framework for integrating maps of 3D genome

structure into the study of genome evolution and the inter-

pretation of common disease-associated variation. Here,
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we show that TAD boundaries, in comparison to TADs, are

enriched for common complex-trait heritability. Addition-

ally, in exploring TAD boundaries stable across cell types,

we find they are further enriched for heritability of hema-

tologic, immunologic, and metabolic traits, as well as

evolutionary constraint, CTCF binding, and housekeeping

genes. These findings demonstrate a relationship between

3D genome structure and the genetic architecture of com-

mon complex disease and reveal differences in the evolu-

tionary pressures acting on different components of the

3D genome.

Previous work has predominantly characterized the

importance and evolutionary constraint of different com-

ponents of the 3D genome from the perspective of SV

and rearrangement events. We address the relationship be-

tween genome 3D structure across cell types at the level of

common single nucleotide variation. We consider evolu-

tionary constraint within humans (�100,000 ya) and

constraint across diverse vertebrate species (�13-450 mya).

At the scale of common human variation, we show that

TAD boundaries are enriched for common variants that ac-

count for the heritability of common complex traits. This

relationship between 3D genome structure and common

disease-associated variation aligns with the finding of

Whalen et al.35 that human haplotype breakpoints—

which are associated with increased variation as a result

of the mutagenic properties of recombination—are

depleted at chromatin boundaries. Together, these findings

suggest that TADs and TAD boundaries differ in their toler-

ance to genetic variation.

Over vertebrate evolution, we show that TAD boundaries

have more sequence-level constraint than TADs. This pro-

vides a complementary perspective to that of Krefting

et al.,25 who found that human TAD boundaries are en-

riched for syntenic breaks when they compared humans

to 12 other vertebrate species, and they thus concluded

that intact TADs are shuffled over evolutionary time.

While shuffling a TAD may ‘‘move’’ its genomic location,

preserving the TAD unit also requires maintaining at least

part of its boundary. Our work suggests that even though

TADs are shuffled, the boundary-defining sequences are

under more constraint than the sequences within the

TAD. This is further supported by the high concordance

of TAD boundaries within syntenic blocks across different

species and by depletion of SVs at TAD boundaries in hu-

mans and primates.7,18,26,33,39,40

Slight variation in 3D structure can cause large changes

in gene expression.22,24 For example, CTCF helps maintain

and form TAD boundaries; consequently, altering CTCF

binding often leads to functional gene expression changes,

e.g., oncogenic gene expression in gliomas.28 We hypoth-

esize that altering gene regulation though common-

variant disruption of transcription-factor motifs, such as

CTCF, that are important in 3D structure organization con-

tributes to the enrichment for complex-disease heritability.

However, variation at TAD boundaries most likely also

modifies genes or regulatory elements, such as enhancers,
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that are known to be enriched at boundaries without

disrupting the TAD architecture. A deeper mechanistic un-

derstanding of TAD formation will be critical to further un-

derstanding how TAD-boundary disruption contributes to

both rare and common disease at potentially nucleotide-

level and cell-type resolution.

Our finding of divergent patterns of TAD boundary her-

itability enrichment for different traits (enrichment for

hematologic, immunologic, and metabolic traits versus

depletion for psychiatric and dermatologic traits) suggests

that the 3D genome architecture might play differing roles

in the genetic architecture of different traits. As a prelimi-

nary test of this hypothesis, we evaluated the relationship

between boundary stability and intra-TAD heritability

enrichment. We find that, for traits with heritability deple-

tion at boundaries (psychiatric, dermatologic traits), TADs

with stable boundaries have greater intra-TAD heritability

enrichment (Figure S16). Thus, for these traits, we specu-

late that stable boundaries might function to insulate

important intra-TAD functional elements (e.g., enhancers

or genes). This idea is consistent with previous work

showing that super-enhancers are insulated by the stron-

gest boundaries (in a single cell type).44 However, for the

boundary-enriched traits (hematologic, immunologic,

metabolic), we hypothesize that essential functional ele-

ments are enriched at the stable boundaries (rather than

inside the TAD). This is supported by previous work that

detected a positive association between genome-wide

binding of CTCF, a transcription factor intimately involved

in TAD boundary formation, and eczema, an immunologic

trait that we identified as part of the boundary-enriched

trait cluster.83 Thus, it will be important to further explore

how TAD boundaries (or other functional elements at

TAD boundaries) might play different regulatory roles in

different traits and diseases. This will be especially inter-

esting to consider from an evolutionary perspective in

light of evidence that certain subtypes of TADs, depending

on the regulatory role of genes they contain, are under

different selective pressures.84

Finally, we identify substantial variation among 3D

maps across cell types. Whereas TAD stability across cell

types is greater than expected by chance, our findings

expand the number and diversity of compared cell types

and identify a large proportion of boundaries unique to

single cell types (see Supplemental Information). Further-

more, using our measurement of cell-type stability to

stratify TAD boundaries identifies meaningful biological

differences: stable boundaries are enriched for common-

trait heritability, evolutionary constraint, and functional

elements. Although we identify this enrichment for stable

boundaries, we anticipate that cell-type-specific TAD

boundaries often have functional significance relevant to

their context; however, we are underpowered to detect

trait-heritability enrichment in cell-type-specific TAD

boundaries.

Several limitations should be considered when interpret-

ing our results. First, they are based on available Hi-C data
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and existing methods for calling TADs. The Hi-C data were

generated by different groups, so there could be batch- or

protocol-specific effects. However, previous work suggests

that biological differences dominate lab-of-origin effects

in comparisons of structural similarity.42 Furthermore, we

showed that the conclusions are robust to the computa-

tional method used (Figure S15) and that our stability re-

sults are not contingent on the specific set of cell types

considered (Figure S12). Nonetheless, higher-resolution

Hi-C across diverse cell types in multiple replicates is

needed. Second, there is no standard for defining TAD

boundaries. We use two complementary approaches and

show our conclusions are robust. The first approach con-

siders heritability across the 3D structural landscape by

partitioning TADs and their flanking regions into 20

equal-size bins and enable comparison with previous

work.25 The second defines fixed-size boundaries at multi-

ple resolutions: 40, 100, and 200 kb. Continued efforts to

integrate data from multiple TAD-calling algorithms to

more precisely define TAD boundaries, especially given

their hierarchical nature, will further refine our observa-

tions.45,85 Despite the complexities inherent in identifying

TAD boundaries, our findings replicate with all our bound-

ary definitions and with different TAD calling pipelines.

Here, we introduce a method for quantifying the stabil-

ity of a TAD boundary across cell types and demonstrate

enrichment of complex-trait heritability, sequence-level

constraint, and CTCF binding among stable TAD bound-

aries. Our work suggests the utility of incorporating 3D

structural data across multiple cell types to aid context-spe-

cific non-coding variant interpretation. Starting from this

foundation, much further work is needed to elucidate the

molecular mechanisms, evolutionary history, and cell-

type-specificity of TAD-structure disruption. Furthermore,

althoughwe have focused on properties of TAD boundaries

stable across cell types, it will also be valuable to identify

differences in TAD boundary stability across species and

find human-specific structures across diverse cell types.27

Finally, as high-resolution Hi-C becomes more prevalent

from diverse tissues and individuals, we anticipate that

computational prediction of personalized cell-type-specific

TAD structure86,87 will facilitate understanding of how

specific genetic variants are likely to affect 3D genome

structure, gene regulation, and disease risk.
Data and Code Availability

The datasets we generated are available in the TAD-stabil-

ity-heritability GitHub repository [https://github.com/

emcarthur/TAD-stability-heritability] and at Zenodo:

https://doi.org/10.5281/zenodo.360155988 and include

all results of our boundary calling (40 kb, 100 kb bookend,

and 200 kb bookend) and all partitioned heritability anal-

ysis output (by cell type and trait). The repository also con-

tains a Jupyter notebook with code for analysis, statistics,

and figure generation.
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Web Resources

CTCF ChIP-seq peaks, https://www.encodeproject.org/

housekeeping genes, https://www.tau.ac.il/�elieis/HKG/HK_

genes.txt

information regarding the cell types from ENCODE, http://

genome.ucsc.edu/ENCODE/cellTypes.html

GWAS traits formatted for LDSC from the Alkes Price lab, https://

data.broadinstitute.org/alkesgroup/LDSCORE/independent_

sumstats/

GitHub, https://github.com/emcarthur/TAD-stability-heritability

LDSC, https://github.com/bulik/ldsc

PhastCons elements, RefSeq Genes, and genome gaps, https://

genome.ucsc.edu/cgi-bin/hgTables

TAD maps from 3D Genome Browser, http://3dgenome.fsm.

northwestern.edu/publications.html
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