
Machine Learning Prediction of Kidney Stone Composition
Using Electronic Health Record-Derived Features

Abin Abraham, BS,1,* Nicholas L. Kavoussi, MD,2,* Wilson Sui, MD,2

Cosmin Bejan, PhD,3 John A. Capra, PhD,1,4,5,{ and Ryan Hsi, MD2,{,i

Abstract

Objectives: To assess the accuracy of machine learning models in predicting kidney stone composition using
variables extracted from the electronic health record (EHR).
Materials and Methods: We identified kidney stone patients (n = 1296) with both stone composition and
24-hour (24H) urine testing. We trained machine learning models (XGBoost [XG] and logistic regression [LR])
to predict stone composition using 24H urine data and EHR-derived demographic and comorbidity data. Models
predicted either binary (calcium vs noncalcium stone) or multiclass (calcium oxalate, uric acid, hydroxyapatite,
or other) stone types. We evaluated performance using area under the receiver operating curve (ROC-AUC) and
accuracy and identified predictors for each task.
Results: For discriminating binary stone composition, XG outperformed LR with higher accuracy (91% vs
71%) with ROC-AUC of 0.80 for both models. Top predictors used by these models were supersaturations of
uric acid and calcium phosphate, and urinary ammonium. For multiclass classification, LR outperformed XG
with higher accuracy (0.64 vs 0.56) and ROC-AUC (0.79 vs 0.59), and urine pH had the highest predictive
utility. Overall, 24H urine analyte data contributed more to the models’ predictions of stone composition than
EHR-derived variables.
Conclusion: Machine learning models can predict calcium stone composition. LR outperforms XG in multi-
class stone classification. Demographic and comorbidity data are predictive of stone composition; however,
including 24H urine data improves performance. Further optimization of performance could lead to earlier
directed medical therapy for kidney stone patients.
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Introduction

K idney stone composition reflects specific physio-
logic conditions leading to urinary calculus forma-

tion.1,2 Stone composition is obtained from surgical
extraction or captured spontaneous stone passage. Clinical
guidelines recommend performing stone analysis when
possible and repeat testing when additional samples can be
obtained over time to guide treatment.3 In practice, how-
ever, stone composition is known in the minority of kidney
stone patients.4 Accurate, noninvasive methods for pre-
diction of stone composition by using demographic, clin-

ical, and 24-hour (24H) urine data would enable targeted
preventative treatment without a need for definitive stone
analysis.

Previously, logistic regression (LR) has been used to pre-
dict 24H urine parameters from demographic and medical
history in calcium formers.5 However, the performance of the
LR method had limited accuracy (overall 64%). Unlike LR
methods, machine learning methods, such as boosted deci-
sion trees, may provide better accuracy by identifying non-
linear relationships among predictive features that better
discriminate stone types. Machine learning algorithms build
mathematical models for classifying new data from labeled
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training examples by extracting predictors from raw data. Prior
applications of machine learning have enabled accurate pre-
diction of stone type from processed CT images or by per-
forming a direct computer vision analysis of stones.6,7

However, computational methods have yet to be developed for
the prediction of stone composition from clinical parameters.

We sought to develop machine learning models for pre-
dicting stone composition based on a set of demographics,
clinical, and laboratory parameters among a large cohort of
kidney stone patients. We additionally sought to assess which
clinical and demographic predictors were the strongest pre-
dictors of stone composition in the models. We trained both
boosted decision tree (XGBoost [XG]) and LR machine
learning models with a set of electronic health record (EHR)-
derived clinical data and evaluated their ability to predict
kidney stone composition. Our machine learning models
predicted kidney stone composition and identified unique
features leading to prediction from EHR-derived data.

Materials and Methods

Patient cohort

After local institutional review board approval, we per-
formed a retrospective review of all adult patients with kid-
ney stone disease who completed 24H urine studies at our
institution between 2009 and 2019 and with kidney stone
composition available (n = 1296). We extracted demographic
and clinical information from our cohort using the Vanderbilt
University Medical Center Research Derivative, an institu-
tionally maintained database of the EHRs.8 A specialized
laboratory was used for all urine testing (Litholink Cor-
poration, Chicago, IL, USA) and stone composition analysis
(Beck Laboratories, Greenwood, IN, USA). Only one stone
was analyzed per patient. If there were multiple stone ana-
lyses, we identified the temporally closest stone analysis and
24H urine test for the patient. We confirmed that all 24H
urine collections were adequate based on gender-specific
creatinine per kilogram (Cr24/kg) measurements. Super-
saturations were calculated with EQUIL2, representing the
relative supersaturation ratio.9

Stone composition

Our primary objective was to develop machine learning
models to predict stone composition using demographic,
clinical, and urine analyte data. Extracted stone composi-
tions included ammonium hydrogen urate, calcium carbon-
ate phosphate, calcium oxalate (monohydrate or dihydrate),
calcium phosphate (brushite and hydroxyapatite), magne-
sium ammonium phosphate (struvite), cystine, or uric acid. If
stone composition was mixed, the stones were categorized
by highest percentage composition, and then classified as
either calcium (i.e., calcium oxalate, hydroxyapatite, or
brushite) or noncalcium stones (i.e., ammonium hydrogen
urate, cystine, uric acid, and magnesium ammonium phos-
phate). Second, we subclassified stones as one of calcium
oxalate (includes monohydrate or dihydrate), hydroxyapa-
tite, uric acid, or other.

Predictors for machine learning models

We extracted demographic and clinical characteristics
from the EHR using a semiautomated data extraction

tool.10,11 Demographic information included age at urine
testing, gender, body mass index (BMI), and race. Clinical
characteristics were extracted based on International
Classification of Disease (ICD) coding (Supplementary
Appendix Table 1). We also assessed whether patients had
been prescribed an alkalinizing agent, allopurinol or a
thiazide diuretic (Supplementary Appendix Table 2). Then,
we extracted 24H urine laboratory values, including vol-
ume (Vol24), calcium (Ca24), oxalate (Ox24), citrate
(Cit24), UA (UA24), sodium (Na24), potassium (K24),
magnesium (Mg24), phosphorous (P24), chloride (Cl24),
sulfate (S24), urea nitrogen (UUN24), ammonium (NH4),
creatinine (Cr24), creatinine per kilogram (Cr24/kg), cal-
cium per kilogram (Ca24/kg), urine pH, as well as super-
saturation index of calcium oxalate (SSCaOx), calcium
phosphate (SSCaP), and uric acid (SSUA).

Models for predicting stone composition. We evaluated
whether a gradient-boosted decision tree (XGBoost version
0.81, XG) could predict urinary stone composition. XG is a
type of machine learning algorithm that combines many de-
cision trees for classification.12 The algorithm sequentially
builds decision trees by penalizing incorrect predictions
from the previous decision tree. Decision trees are well suited
for EHR data and urine analytes as they are robust for the
nonlinear correlation of predictors.13

XG models were trained using the predictors already
described. Race and gender were categorically encoded,
whereas clinical characteristics and medications were en-
coded as binary variables. All other predictors were treated as

Table 1. Cohort Demographics

Demographics N (%)

Age (years – SD) 51 – 15
Gender, male 685 (53)
Gender, female 611 (47)
BMI (mean – SD) 30 – 8
Race

Caucasian 1180 (91)
African American 56 (4)
Asian 20 (2)
Other 40 (3)
Time between stone collection and 24H

urine collection, days (mean – SD)
148 – 365

Medical history
Bowel disease 119 (9)
Hypertension 707 (54)
Gout 57 (4)
Diabetes 292 (22)
Cystinuria 3 (0.2)
Coronary artery disease 36 (3)
Cerebrovascular accident 36 (3)
Gastroesophageal reflux disease 469 (36)
Osteoporosis, immobility,

or hyperparathyroidism
72 (5)

Medications
Alkalinizing agent 112 (8)
Thiazide 89 (6)
Allopurinol 52 (4)

24H = 24-hour; BMI = body mass index; SD, standard deviation.
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continuous variables. Missing values (69 BMI values and 58
Cr24/kg values out of 1296 subjects) were imputed by con-
sidering each predictor as a function of other predictors.14

Next, we randomly split the data with the equal proportion of
stone composition types into a training (80%) and a valida-
tion cohort (20%).

Each stone type was weighted based on prevalence to ac-
count for the imbalanced data set. Using the training data, XG
hyperparameters were optimized using Bayesian techniques.
Standardized hyperparameters were used.15 Model perfor-
mance was evaluated on the validation cohort using the area
under the receiver operating curve (AUC-ROC), sensitivity,
and accuracy metrics. LR models were trained and evaluated
using the same cohort as used for the XG model. We did not
perform any hyperparameter tuning. LR model performance
was also evaluated using the validation cohort.

Model interpretation

To determine predictors driving the models, we use
Shapley Additive Explanation (SHAP) as implemented in the
SHAP v0.35.0.16 SHAP scores represent the marginal con-
tribution of each predictor over all permutations of predictors

Table 2. Urinary Abnormalities

and Stone Composition

24H urine abnormality N (%) Normal range

Low urine volume 747 (57) >2 L
Hypercalciuria 543 (41) <250 mg/day for male

<200 mg/day for
female

Hypocitraturia 588 (45) >450 mg/day for male
>550 mg/day female

Acidic urine 566 (43) pH <5.8
Alkaline urine 407 (31) pH >6.2
Hyperuricosuria 299 (23) >1 g/day
High urine sodium 811 (61) <150 mmol/day
Hyperoxaluria 474 (37) <40 mg/day
Majority stone composition

Calcium oxalate 880 (68)
Hydroxyapatite 241 (18)
Carbonate apatite 20(2)
Uric acid 100 (8)
Other 55 (4)

FIG. 1. LR and XG discriminate between calcium and noncalcium urinary stone composition. (a) Schematic workflow for
training models: EHR predictors were extracted and used to train a boosted decision tree (XG, blue) or LR (orange) for the
prediction of stone composition as either calcium or noncalcium. (b) Calcium stone composition was identified in the
majority (91%) out of 1296 patients. (c) Receiver operator characteristic curves for XG and LR models demonstrate an
AUC for both models as 0.80. Models were evaluated using the held-out test cohort of 260 patients. (d) Accuracy, PPV, and
sensitivity for noncalcium stone composition show higher PPV for XG and higher sensitivity for LR. (e) Confusion matrices
with number of stones correctly and incorrectly classified for XG and LR models in the validation cohort. AUC = area under
the curve; EHR = electronic health record; LR = logistic regression; PPV = positive predictive value; XG = XGBoost.
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used for classification. We reported the SHAP score in
units of change in prediction log odds and refer to them as
‘‘predictor importance.’’

Evaluation metrics

Primary outcomes included the AUC-ROC, positive pre-
dictive value (PPV), sensitivity, and accuracy metrics for
predicting stone composition with the machine learning
models. Secondary outcomes included the predictor impor-
tance of each variable from the EHR-derived data used by
the models for stone composition prediction. Since each
urinary predictor had different numerical ranges, all urinary
predictors were normalized between 0 and 1 (i.e., lowest and
highest), respectively.

Results

Demographic descriptions of patients

Table 1 displays demographic information on the 1296
patients included for analysis. The patients were predomi-
nantly Caucasian (91%) with the most common comorbid-

ities being hypertension (54%), gastroesophageal reflux
disease (36%), and diabetes (22%). Only a small number of
patients were on medical therapy with an alkalization agent
(8%), thiazide diuretic (6%), or allopurinol (4%). Calcium
stones comprised most cases (91%). The majority stone
compositions included calcium oxalate (68%), hydroxyapa-
tite (18%), uric acid (8%), and other (6%). Elevated urinary
sodium (61%) and low urine volume (57%) were the most
common abnormalities identified on 24H urine analysis
(Table 2).

Binary classification

Using predictors extracted from EHRs, we trained both
XG and LR models to classify stone composition as either
calcium or noncalcium (Fig. 1a). Both XG and LR models
discriminated between calcium and noncalcium stones
(AUC = 0.80 for both; Fig. 1c). XG had a higher accuracy
(91% vs 79%) for predicting noncalcium stone composition
than LR as well as PPV (0.46 vs 0.26; Fig. 1d, e). However,
LR had a higher sensitivity in identifying noncalcium stone
composition than XG (0.70 vs 0.26; Fig. 1d, e).

FIG. 2. Top predictors of stone composition (calcium vs noncalcium) for XG. (a) Predictor importance scores were used
to quantify the contribution of each predictor in the data set to the prediction of stone composition for each patient. The top
15 predictors are shown. Predictor importance scores indicate the relative contribution of each predictor as the change in log
odds of prediction. (b) The predictor importance scores per patient (one dot) for the top predictors (y-axis) and their impact
on stone composition (x-axis). Positive scores indicate higher likelihood of noncalcium composition; negative scores
indicate higher likelihood of calcium stone composition. Each predictor per individual is colored based on the normalized
predictor value (red = high value, blue = low value). The top predictors identified by the model are known to biochemically
impact kidney stone formation (abbreviations are defined in Materials and Methods section). For example, lower values of
SSUA more likely predict calcium stones whereas higher values more likely predict noncalcium stones. SSUA = super-
saturation of uric acid.
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We identified variables most predictive for binary stone
classification by the XG model by quantifying the predictor
importance of each variable in the validation cohort. The top
three XG predictors of stone composition were SSUA, NH4,
and SSCaP (Fig. 2a). Specifically, higher values of NH4,
SSCaox, SSCaP, Ca24, and Mg24 and lower values of
SSUA, pH, citrate, UA, Sul24, Cr24, Cl24, and P24 in-
creased likelihood of a calcium stone composition predic-
tion. In addition, higher values of SSUA, UA24, Sul24, and
P24, as well as lower values of NH4, SSCaP, pH, SSCaox,
and Mg24 were more likely to predict noncalcium stone
composition (Fig. 2b).

Multiclass classification

Both XG and LR models were trained to predict stone
composition as one of calcium oxalate, hydroxyapatite, uric
acid, or other (Fig. 3a, b). LR outperformed XG with higher
accuracy (0.64 vs 0.56) and AUC (0.79 vs 0.59; Fig. 3b).
Urine pH was the most important global predictor when all
four stone categories were combined. Urine pH also had the
highest predictive value for calcium oxalate, uric acid, and
‘‘other’’ stone compositions. The top predictor for hydroxy-
apatite was Cr24 (Fig. 3c).

Urine analytes improve stone composition prediction

To quantify the impact of urine 24H analytes on prediction
performance, we compared three versions of XG and LR
models: a baseline model including age, race, gender, med-
ical history, and medications; a second version adding urine
24H analytes to the baseline predictors; and a third version
including only urine 24H analytes (Fig. 4a). Across all three
versions, LR had higher ROC-AUC than XG (Fig. 4b).
Adding urine analytes improved ROC-AUC in both XG
(0.53–0.59) and LR (0.68–0.79; Fig. 4b). Models trained
using only urine analytes achieved similar ROC-AUC (LR:
0.79, XG = 0.61) to those trained using both baseline and
analyte predictors. Across the four stone types, different sets
of predictors were prioritized for the final prediction of stone
composition between XG and LR models (Fig. 4c). For ex-
ample, in predicting calcium oxalate stones, the association
of SSUA, Cit24, and SSCaP was strongest for predicting
stone type for the XG model, and Na24, Cl24, and SSCaP
were strongest for the LR model.

Discussion

There are several important findings in this study. First,
machine learning models can predict stone composition

FIG. 3. LR outperforms XG models when predicting multiclass stone compositions. (a) XG and LR models were trained
to predict one of four stone compositions: calcium oxalate (Ca oxalate), hydroxyapatite, uric acid, or other. (b) The LR
model (x-axis) had higher accuracy and ROC-AUC (y-axis) than the XG model. Model performance was evaluated on a
held-out test cohort that was not used for training or validation. (c) The top 15 predictors based on the highest contribution
to the stone composition prediction are shown. Predictor importance was quantified based on the change in the stone
composition predicted log-odds as shown in Figure 2. The contribution of each predictor was further stratified by stone
composition and the top three predictors for each stone composition are annotated by its rank. The distribution of patients by
stone type are shown in the inset figure. Predictor importance reflects the known pathophysiology of stone formation for the
individual stone types. ROC-AUC = area under the receiver operating curve.
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based on demographic, clinical, and urine analyte variables.
In binary classification of stone prediction, XG had higher
accuracy than the LR model. However, in multiclass classi-
fication, the LR model outperformed the XG model. XG
models can identify more complex nonlinear patterns in large
data sets, yet in this instance, weaker performance of the XG
model may reflect the relatively small cohort used for training
our model in the setting of a heterogeneous disease. Second,
important predictors identified by the machine learning
models for stone prediction support the current understanding
of the pathophysiology of stone formation. Third, we dem-
onstrate that 24H urine variables are most predictive for stone
composition, even when used alone beyond demographic and
clinical data in different predictive models. Conversely, we
show that demographic and comorbidity data can be used to
predict stone composition without 24H urine data; however,
the performance is improved when 24H urine data are
available. Taken together, this information shows feasibility
of EHR-derived prediction tools supporting clinical practice
and decision making.

Current machine learning techniques combine predictors
in many layers using numerous computational transforma-
tions. By using regression and boosted decision tree ap-

proaches, we identified the most important predictors in the
models for distinguishing stone composition as well as each
predictor’s relative impact. Factors such as urine pH, SSUA,
BMI, and Cit24 were most impactful when predicting any
category of stone composition, and these are known to con-
tribute to stone pathogenesis.17–19 For example, acidic uri-
nary pH leads to protonation and precipitation of uric acid
and cystine crystals, whereas alkaline pH facilitates crystal-
lization of calcium phosphate stones.20 In addition, acidic
urinary pH has been associated with calcium oxalate for-
mation through heterogeneous nucleation and a decrease in
concentration of urinary buffers, such as citrate.21,22 Some of
the analytes used by our models may play a role in stone
formation, but their involvement has yet to be clearly eluci-
dated. For example, urine ammonium was the second most
important predictor when predicting binary stone classification
by our model and reflects individual acid–base status. Ab-
normalities in urine ammonium are uncommon but associated
with Gastro-intestinal malabsorption and urinary tract infec-
tions.23 Future machine learning models may help explicate the
relative impact of each predictor on stone recurrence.

Previous studies have evaluated prediction models using
clinical and urine analyte data for stone composition.

FIG. 4. Urine 24H analytes drive stone composition prediction. (a) Three versions of XG and LR models were compared
after being trained with different inputs: (1) age, race, gender, medical history, and medications; (2) age, race, gender,
medical history, and medications, as well as urine 24H analytes with the baseline predictors; (3) only urine 24H analytes. (b)
Model performance was evaluated using ROC-AUC averaged across all stone composition categories. LR performed
consistently better than XG. Including only urine analytes had the highest performance; including other nonurine analyte
predictors did not improve performance. (c) Predictor importance score across the validation cohort normalized for each
stone composition. The predictor scores allocate ‘‘credit’’ or the contribution of each predictor per individual for each
predicted stone composition. More specifically, predictor scores represent the marginal contribution of each predictor over
all permutations of predictors used for classification. 24H = 24 hour.
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Moreira et al. used multinomial LR to predict stone type
based on 24H urine data.5 In their smaller cohort (n = 508),
the 24H urine data alone predicted stone type with an ac-
curacy of 64%. The authors concluded that utilizing urine
analyte data in conjunction with other clinical features may
improve stone composition prediction. By incorporating
demographic and clinical data with urine analyte data when
training our machine learning models, we found improved
binary prediction of stone classification (accuracy = 91%).
However, multiclass prediction accuracy was driven pri-
marily by urine analyte data and comparable with the prior
study (accuracy = 64%; Fig. 4b). Kidney stone patients
represent a heterogeneous population, and demographic
and clinical data are variable between subjects.24 In our
model, the influence of these data was small compared with
24H urine analyte data for multiclass stone classification.

Stone analysis is critical to the metabolic evaluation of
stone formers and can help guide treatment in stone for-
mers in part with medical history.3,25 Although kidney stone
composition often directs preventative therapy, stone com-
position testing in practice occurs in the minority of patients.
By training robust machine learning algorithms to accurately
predict stone composition, tools may be developed leading to
earlier targeted dietary or pharmacologic therapy for stone
disease. Although still investigational, the current wide-
spread adoption of machine learning tools in daily life sug-
gests their inevitability in clinical practice. Furthermore,
these models could be optimized to identify nonlinear rela-
tionships between clinical predictors and stone composition
when there are multiple compositions present and elucidate
the clinical relevance of mixed stone compositions.

There are several limitations to our study. The retrospec-
tive design cannot account for unmeasured confounders and
omitted variable bias. EHRs provide an incomplete summary
of treatment for some individuals, and other information such
as Hounsfield units or stone size from diagnostic imaging
could not be confirmed. It is likely some patients were not
necessarily first-time stone formers. We matched stone ana-
lyses with the temporally closest 24H urine results. However,
patients could have previously been given dietary counseling
or pharmacologic therapy that could have impacted 24H ur-
ine results. In addition, it is possible that collected stones had
formed under previous physiologic conditions, which were
no longer present in the patient at the time of the 24H urine
analysis. Furthermore, all stone composition analyses were
performed at a single laboratory, which may not account for
variations in stone composition found across different com-
mercial stone analysis laboratories.26 Only one laboratory
was used for urine analysis and interlaboratory variability of
24H urine analysis could limit model interpretation. Despite
these limitations, our study demonstrates the potential of
machine learning models to noninvasively predict kidney
stone composition. Future optimization of our models in
larger data sets and external validation will help achieve the
clinical promise of this approach.

Conclusion

We have developed machine learning models integrating
demographic and EHR data to predict kidney stone composi-
tion. The performance for predicting calcium vs noncalcium
stones is better than for predicting specific stone subtypes in-

cluding uric acid and hydroxyapatite stones. The predictors
prioritized by the machine learning models for stone prediction
support the current understanding of the pathophysiology of
stone formation. We show that demographic and comorbidity
data can be used to predict stone composition without 24H
urine data; however, the performance is best when including
24H urine data. Further studies to optimize and validate the
models could contribute to the creation of clinical tools used as
a surrogate for stone analysis.
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