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Abstract
The experimental and computational techniques for capturing information
about protein structures and genetic variation within the human genome
have advanced dramatically in the past 20 years, generating extensive new
data resources. In this review, we discuss these advances, along with new
approaches for determining the impact a genetic variant has on protein
function. We focus on the potential of new methods that integrate human
genetic variation into protein structures to discover relationships to dis-
ease, including the discovery of mutational hotspots in cancer-related pro-
teins, the localization of protein-altering variants within protein regions for
common complex diseases, and the assessment of variants of unknown sig-
nificance for Mendelian traits. We expect that approaches that integrate
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these data sources will play increasingly important roles in disease gene discovery and variant
interpretation.

INTRODUCTION
In November 1949, Linus Pauling and coworkers reported a difference in electrophoretic mo-
bility between normal and sickle cell hemoglobins (1). Eight years later, in 1957, Vernon Ingram
pinpointed the cause of the electrophoretic difference through chromatography: the replacement
of a glutamate residue with a valine residue at position six in the beta chain of hemoglobin (2)
(Figure 1a). Pauling and Ingram’s discoveries were groundbreaking in at least two aspects. First,
Pauling’s discovery showed that the mechanism underlying a genetic disease could be traced to
an alteration in a biophysical property of a protein, and second, Ingram’s result demonstrated that
the alteration was due to a change in the amino acid of the corresponding peptide chain (3).When
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Figure 1
Discovery of amino acid substitutions in the HBB gene that induce the sickle cell trait through the abnormal
polymerization of hemoglobins (Hbs). (a) Variation visualized at the sequence level: A single-nucleotide
substitution (A to T) in the HBB gene at codon 6 results in a replacement of a glutamate (Glu) residue with a
valine (Val) residue. (b) 3D structure of Hb gives mechanistic insights into the pathogenic nature of the
amino acid substitution: The exposed Val residue in the variant form [Protein Data Bank (PDB) ID: 2HBS;
PDB ID for the unsubstituted form: 1A3N; one subunit is shown in both structures] becomes a hinge point
for Hb polymerization under conditions of hypoxia. The Val residue in the variant form makes hydrophobic
contacts with Ala70, Phe85, and Val88 from an adjacent Hb molecule. For aggregated Hbs, one subunit from
each of the two neighboring Hbs is shown (PDB ID: 2HBS). In all structures, the heme prosthetic group is
hidden for clarity.
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Protein Data Bank
(PDB): a database of
information about the
3D shapes of proteins
and other
macromolecules,
stored in a
standardized format
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Figure 2
Timeline of key events in the coevolution of the fields of genomics (blue) and protein structure and function (green) from 1940 to 2022.
Abbreviations: EBI, European Bioinformatics Institute; PDB, Protein Data Bank.

viewed in the context of the tertiary structure of hemoglobin obtained via X-ray crystallography
by Max Perutz (4), the cause of sickle cell anemia is elegantly explained at the molecular level:
Hydrophobic contacts form between the valine residues of one hemoglobin molecule and the ala-
nine, phenylalanine, and leucine residues of another adjacent hemoglobin molecule, causing the
fibers to stretch and deform the red blood cell (5) (Figure 1b). This convergence of genetics,
biochemistry, and structural biology is a foundational example of molecular medicine.

Many other inherited disorders have been explored in a similar fashion by first identifying ge-
nomic regions and genetic variants cosegregating with the disorder in families and then providing
a molecular characterization of the influential variants. Huntington’s disease was first investigated
through genetic linkage analysis, which identified a region on chromosome 4 (6) that nearly ten
years later was localized to a trinucleotide expansion (CAG) in the HTT gene (7). Molecular ge-
netics work later revealed the protein encoded byHTT to be an activating transcription factor for
the BDNF gene whose activity is lost with pathogenic levels of the CAG expansion (8). Identifi-
cation of the CFTR gene for cystic fibrosis followed a similar path (reviewed in 9). The discov-
ery of these influential proteins for disease spawned extensive efforts to understand their function
through a variety of techniques that ultimately culminated in the determination of high-resolution
3D structures (10, 11). Key events in the coevolution of the science of protein structure/function
and genetics/genomics are outlined in Figure 2.

While this general process of integrating genetic and structural understanding has proven fruit-
ful for several genetic disorders, it is a slow process,with genetic analyses and discovery often siloed
away frommolecular and biochemical characterization of proteins. Explaining the molecular con-
sequences of genetic variants and how they influence disease risk remains a major goal in the field
of human genetics. In this review, we discuss how recent advances in both genomic sequencing
technology and protein structure determination are poised to disrupt this traditional scientific
workflow by considering genetic variation in the context of the 3D structure of the protein to
advance genomic discovery and our understanding of molecular function simultaneously.

PROTEIN STRUCTURE AND GENETIC VARIATION DATABASES
ARE MASSIVE, BUT LARGELY INDEPENDENT
Recent Advances in Protein Structure Determination
The Protein Data Bank (PDB) just celebrated its 50th anniversary and now grows at a rate of ap-
proximately 10% per year with over 10,000 new protein structures released annually since 2015
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Critical Assessment
of protein Structure
Prediction (CASP):
a biennial experiment
within the structure
prediction community
involving a
competition to predict
an unpublished set of
experimentally derived
protein structures

Genome
Aggregation
Database (gnomAD):
a project to aggregate
and harmonize exome
and genome
sequencing data from
large-scale sequencing
projects to make
summary data
available for the wider
scientific community

dbSNP: a public
domain archive of
genetic variation
managed by the US
National Center for
Biotechnology
Information

(12, 13). While the bulk of these are derived from traditional structural biology techniques like
X-ray crystallography and nuclear magnetic resonance, a growing percentage of these structures
are derived from cryo-electronmicroscopy (cryo-EM) due tomajor technological advances in that
field (14).While cryo-EM structures are generally not as high resolution as structures from X-ray
crystallography, advances in cryo-EM methods can resolve the structure of membrane proteins
and intrinsically disordered proteins, both of which are extremely difficult to obtain with classic
approaches (15, 16). For example, while the HTT and CFTR proteins have been studied exten-
sively for decades, only partial structure models were available. The full structures for CFTR (17)
and HTT (18) were only recently resolved from cryo-EM in 2018.

The PDB, with its large number of experimentally determined protein structures, also pro-
vides templates for computationally deriving structures of other proteins (19). When a protein
of interest is sequence-similar to a protein with an existing high-resolution structure, homol-
ogy modeling can be applied to produce a structure of the similar protein (20). Large efforts like
SWISS-MODEL (21) andModBase (22) have systematically applied this approach for large num-
bers of human proteins to generate computational predictions.

In contrast to homology modeling, de novo computational prediction attempts to estimate a
protein structure from its amino acid sequence alone and has long been an extremely challeng-
ing problem in biology (23, 24). While these approaches have had very limited success, recent
deep learning approaches have shown dramatic improvements in structure prediction. Structure
prediction algorithms are evaluated through the biennial Critical Assessment of protein Structure
Prediction (CASP) experiment (25), which compares method performance on soon-to-be released
protein structures held back by the PDB. Deep learning approaches have made significant ad-
vances in the CASP experiment (26, 27), and in 2020 the AlphaFold2 approach produced accurate
predictions of unsolved protein structures that are essentially indistinguishable from experimen-
tal structures for many proteins (28, 29). Deep learning approaches from the Rosetta community
have also recently achieved substantial accuracy at predicting structures (30), protein interfaces
(31), and protein design (32). While computational predictions still have some limitations, these
approaches dramatically extend our catalog of structures to cover nearly all human proteins.

Recent Advances in Population-Scale Determination of Genetic Variation
Since Pauling and Ingram’s work, techniques for sequencing DNA have undergone several rev-
olutions. Building on the advance provided by Sanger sequencing, the Human Genome Project
was completed in the early 2000s (33). The resulting reference genome enabled the development
of second-generation short-read sequencing technologies with dramatically lower cost (34). The
rapid and continuing decrease in the cost of exome and genome sequencing has made the identifi-
cation of genetic variants present in an individual commonplace, resulting inmany high-resolution
catalogs of genetic variation that have empowered large-scale genetic association studies (35–37).

Recent large human genetic variation datasets generated by high-throughput DNA sequenc-
ing have identified millions of genetic variants, the vast majority of which are exceptionally rare.
For example, in the Alzheimer’s Disease Sequencing Project whole-exome sequencing of∼10,000
individuals, 97% of identified variants were found to have a minor allele frequency of less than
1%, and 23% of variants were observed in only a single sample (singleton variants) (38). The
Genome Aggregation Database (gnomAD) project aggregated tens of thousands of exomes and
genomes frommultiple disease phenotype studies and found that 99% of variants have a frequency
of less than 1% (39). The most recent release (v3.1) called over 200 million genetic variants (40).
The National Center for Biotechnology Information’s database of genetic variants, dbSNP (41),
has long served as a clearinghouse for genetic variant information, and its latest build (build 155)

144 Li et al.
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Telomere-to-
Telomere (T2T)
Consortium: an open,
community-based
effort to generate the
most complete
assembly of the human
genome to date using
long-read sequencing
technologies

Genome-wide
association study
(GWAS):
a population-based
analysis of large-scale
genetic data used to
identify commonly
occurring genetic
variants that associate
with disease

reports over 1 billion distinct reference single-nucleotide polymorphism clusters thanks to the
recent incorporation of sequencing studies. While the bulk of these variants are located in non-
coding regions of the human genome, nearly 15 million variants lie within exonic regions, and the
1000 Genomes Project estimates that each individual carries 10,000 to 12,000 protein-altering
variants (42). These rare variants’ potential effects on diseases of interest remain largely unknown
because we lack the statistical power to detect associations between single low-frequency vari-
ants and phenotypes. However, unlike the glutamate-to-valine substitution in hemoglobin, most
of these identified genetic variants likely have very small effects, only modestly impacting disease
risk over the life course (43).

While nearly all of sequence data contributing to these database expansions are based on short-
read sequencing technologies, new long-read sequencing methods are now being employed to fill
in the gaps from telomere to telomere of human chromosomes (44). The Telomere-2-Telomere
(T2T) Consortium recently published updated assemblies of chromosome X (45) and chromo-
some 8 (46) and is building the most comprehensive map of the genome to date (47). Sequencing
studies built from these newer maps will expand our catalogs of genetic variation even further to
include previously inaccessible regions of the genome and complex structural variants.

CURRENT METHODS FOR DISEASE GENE DISCOVERY
AND VARIANT INTERPRETATION DO NOT FULLY
LEVERAGE PROTEIN STRUCTURE
Genetic Methods for Disease Gene Discovery
Genetic linkage analysis was used to discover the HTT and CFTR genes, and it has been used
extensively to study hundreds of inherited Mendelian diseases (48). Through the estimation of
shared chromosomal segments within families, linkage analysis identifies the coinheritance of ge-
nomic regions with disease. Additional fine-mapping studies and molecular characterization of
genomic regions are required to further identify causal variants within genes of the region. Link-
age analysis has also had some success in identifying genes for familial forms of genetically complex
diseases, such as the discovery of BRCA1/2 genes for breast cancer (49, 50) and the APOE gene for
Alzheimer’s disease (AD) (51). Despite these successes, linkage analysis is dramatically underpow-
ered for gene discovery within families with more sporadic occurrence of other complex diseases.
The development of microarray technologies in the late 1990s and early 2000s enabled large-
scale genotyping, and since the mid-2000s the genome-wide association study (GWAS) has been
the primary genetic study design (35). Most GWAS are based on large-population-based samples
and attempt to associate specific base pair changes that are relatively frequent in a population
with disease risk. This approach has had dramatic success at identifying genetic associations for
many traits where linkage analysis failed. The vast majority of these variants, however, only mod-
estly alter disease risk through changes to gene regulation (52). Due to the need for exceptionally
large sample sizes and the confounding effect of genetic ancestry, GWAS have focused largely on
individuals of European descent, which reduces the generalization of genetic effects and the iden-
tification of disease variants distinct to other human populations (53). For studies of rare variants,
numerous efforts (including dedicated funding support) are ongoing to enhance the diversity of
genomic sequencing studies going forward (54).

Because of their low frequency, rare variants are especially difficult to associate with traits
due to very limited statistical power. Unit-based approaches have been developed to alleviate
this lack of power by testing the collective effect of a group of rare variants. These approaches
share the common strategy of grouping variants by a (presumably) functional unit (e.g., a gene
or transcript) and then estimating an effect based on a function of those variants. The most basic
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Sequence kernel
association test
(SKAT): a statistical
approach that
combines the effects of
multiple rare variants
within an analysis unit
to improve power for
rare variant association
studies

of these is a collapsing test, which assigns individuals a binary value based on the presence or
absence of a variant within the unit (55). If some individuals carry multiple variants within the
same unit, collapsing tests discard this potentially useful information. To address this limitation,
a burden test creates a discrete variable based on the number of variants each individual carries
within the unit and then estimates a per-variant effect on the trait under study. Key assumptions
of the burden test are that all variants within the unit affect risk in the same direction (typically
they are assumed to be deleterious) and that all variants have approximately equivalent effects on
the phenotype. The sequence kernel association test (SKAT) eliminates these assumptions using
a statistical framework that estimates the variance in the phenotype explained by rare variants in
the unit through kernel regression (56). This test estimates a measure of genetic sharing among
all pairs of individuals within a dataset and estimates the relationship between this genetic sharing
and phenotype similarity among all pairs of individuals. Using SKAT, variants can have different
and opposing directions of effect within the same unit and contribute to the test statistic. The
typical implementation of SKAT, however, does not estimate effects for singleton variants (as they
are not shared among two or more individuals to allow for estimation of their impact on trait
variance). Several extensions to the SKAT framework have been developed to further improve
statistical power by accounting for singleton effects (SKAT-O) (57), better estimating the null dis-
tribution (58), and computing exact p-values using likelihood ratio tests (59), among many others
(60–63).

Despite these statistical developments, power for rare variant association tests remains some-
what limited, especially when neutral or benign variants are included in the test (58). As with most
statistical tests, a straightforward way to improve power is to increase the sample size; however,
for sequencing studies, adding more samples will also result in the identification of additional
rare variants and singletons. Adding additional variants to unit-based tests may actually decrease
power if they are nonfunctional or do not otherwise influence the trait (58). Therefore, adding
more samples may increase power for some variants, but it also expands the problem by identifying
additional variants that may reduce the overall power of unit tests.

Multiple approaches have been developed for prioritizing variants as benign, or likely to al-
ter biological functions and potentially pathogenic, and it is common practice to include variant
annotations as either a criterion for including variants in a unit test or as a metric as part of the
test statistic itself. Most studies have used coarse annotations for this filtering (i.e., missense only,
putative loss of function, etc.) (64, 65) or have combined scoring approaches from multiple an-
notation methods [e.g., VAAST (Variant Annotation, Analysis, and Search Tool), STAAR (set test
for association using annotation information)] (66, 67). While some of these approaches include
computational predictions of variant effects that may leverage protein information as part of their
predictions [such as PolyPhen (68)], these represent a very limited use of information about the
functional context of the variants—protein structure—in tests of rare variant association.

High-Throughput Experiments for Missense Variant Interpretation
According to the AmericanCollege ofMedicalGenetics and the Association forMolecular Pathol-
ogy guidelines, functional data are the strongest evidence for classifying a variant as benign or
pathogenic (69). Traditionally, the functional effect of variants has often been studied via site-
directed mutagenesis followed by functional characterization in a model system.While this one-
at-a-time approach usually generates accurate experimental data supporting variant classification
and insights into the mechanism underlying the functional effect, it probes only a tiny fraction of
the possible genetic variation in a gene. This severely limits our understanding of how the global
landscape of genetic variation influences function and results in phenotypic consequences (70).

146 Li et al.
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Multiplexed assays of
variant effect
(MAVEs): large-scale
experimental
approaches that couple
functional assays with
high-throughput
sequencing to assess
the functional
consequences of
thousands of genetic
variants
simultaneously

Variant of unknown
significance (VUS):
a genetic variant
identified within a
disease-associated
gene that may or may
not have implications
for disease risk

Recent developments in multiplex assays of variant effect (MAVEs) (71, 72) allow for the exam-
ination of massive numbers of variants in a single experiment. For example, cellular growth-based
deep mutational scanning (73, 74) has enabled the systematic characterization of all possible, or
a large fraction of, missense variants of several disease genes (71). More generally, MAVEs use
cell-based assays where a protein is expressed from a plasmid or virus that can be mutated to
form screening libraries. These libraries are then coupled with a selection process to identify the
variants enriched and depleted in functional cells. They have the distinct advantage of testing all
variants simultaneously under the same experimental conditions so that measurements for differ-
ent variants are directly comparable to each other. Due to their high-throughput nature, MAVEs
are well suited for efficient functional characterization of large-scale newly discovered variants
(71), or for reclassifying variants of unknown significance (VUS) that may emerge from clinical
sequencing (75), and may help build a foundation for functional interpretation of other variants
that might be identified in the future (76). While MAVEs have been implemented for certain
protein functions like antibiotic resistance (77, 78) or protein-binding affinity (79), given the di-
versity of protein functions, the design and validation of a well-performing functional assay for
protein-altering variants are a major challenge for broad implementation of these assays (80).

The coarseness of the functional assays implemented inmostMAVEs does not provide detailed
information on the mechanism by which each variant exerts an effect. A recently developed assay
called variant abundance bymassively parallel sequencing (VAMP-seq) measures the effect of vari-
ants on the steady-state cellular abundance of a protein,which is ultimately dictated by the stability
of variant proteins (81). VAMP-seq is mechanistically appealing because it can separate variants
with modest effects on stability from those that are substantially destabilizing (70). Compared to
other approaches, VAMP-seq is also more cost effective because it can be generalized to many
proteins and provides more information about the thermodynamic effects of individual variants
on the protein (81). At the molecular level, a variant may induce a wide range of changes beyond
compromising stability and structure, including changes to conformational dynamics and reac-
tion kinetics (82), disrupted macromolecular interaction (82, 83), and ablation of posttranslational
modification sites (83), among others (84). Extensions of the VAMP-seq approach will hopefully
allow for high-throughput characterization of these other aspects of protein function as well.

While these approaches represent exciting new developments in high-throughput assays of
variant effect, they are currently cost prohibitive for conducting on a broad scale. Thus, a com-
prehensive, experimentally constructed resource for prioritizing variant function formost proteins
is unlikely to be available in the foreseeable future.

Computational Variant Effect Prediction Methods
Computational variant effect prediction is a valuable approach that can provide important evi-
dence to support variant classification (69), in particular, evidence based on biological first princi-
ples (85). Numerous other reviews have covered computational variant effect prediction in detail
from various perspectives (86–90). Despite this immense body of literature, several substantial
limitations in these approaches are evident.

First, for many methods the precise nature of what is being predicted is unclear (i.e.,
pathogenicity, loss/gain of function, damaging effect, or deleteriousness). This issue has been gen-
erally underappreciated (91), although recent work points out that computational tools that claim
to predict variant effect often fail to define “effect” (90).Key examples in the literature aremethods
trained to discriminate disease variants from benign variants across orthologous proteins; these
approaches may interpret their effect as functional even though no explicit functional evaluation
has been made (91).

www.annualreviews.org • Integrating Protein Structure and Genetics 147
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Second, many methods also operate as a black box, providing a prediction with no underlying
model, rationale, or justification for making it. With this limitation, reporting a potential molec-
ular effect for a functional variant will be extremely difficult (92). There are notable exceptions to
this trend (93, 94), and methods for deriving meaning from complex deep learning models have
been developed (95) and may be applied to better understand the biological features used to derive
predictions.

Third, variant effect prediction methods are still not very accurate (especially for use in a clini-
cal setting) and often generate predictions that agree poorly with one another (96, 97). Variant
classification methods are ultimately trained using en masse datasets of known (or presumed)
pathogenic variants across thousands of individuals (68, 98, 99). While the refinement of these
resources is an ongoing effort in the genetics community, they are likely subject to severe as-
certainment and reporting biases, inconsistencies in data quality and assessment, and reporting
errors (100). Classification or scoring approaches also assume a uniform threshold of deleterious-
ness across the whole genome, which is a poor assumption given decades of research on variable
penetrance (101). Presumably these issues can largely be resolved by training models on a gene-
(102), gene-family- (92), or disease-specific (103, 104) basis using homogeneously derived variant
annotation data, such as a KCNQ1-specific model (102), or the epilepsy gene-specific model of
Traynelis et al. (103).

Predictions of variant impact may prove useful for rare variant association tests for identifying
new disease genes, but the impact of this area extends beyond genomic discovery. Once disease
genes are known, these data have the potential to transform the practice of medicine by enabling
the delivery of precision care based on patients’ genome sequences (84–86, 105–107). However,
a major roadblock to achieving this goal is our inability to reliably interpret the molecular, phe-
notypic, and therapeutic consequences of the millions of genetic variants that are being revealed
by sequencing patients’ genomes (71, 105, 107, 108). The Critical Assessment of Genome Inter-
pretation (CAGI) is an analog to CASP that provides the scientific community with a framework
for assessing new methods for variant impact (109), but none of the tools developed for the inter-
pretation of genetic variants over the past two decades is sufficiently accurate or informative to be
used to interpret novel variants in a general clinical setting (96, 110, 111).

THE POTENTIAL FOR INTEGRATING GENETIC VARIANTS AND 3D
STRUCTURE TO IMPROVE GENOMIC VARIANT ANALYSIS
Integrating the large catalogs of human genetic variants with 3D protein structures represents a
promising new approach to variant prioritization for both rare and common diseases. In the fol-
lowing subsections we first describe several preliminary analyses demonstrating that the patterns
of germline and somatic variants in protein 3D space provide valuable functional context. We
then highlight initial efforts to integrate structural context into algorithms for (a) common dis-
ease gene discovery and (b) variant interpretation in rare disease. An overview of relevant methods
is provided in Table 1.

Analysis of Variants in 3D Identifies Disease Hotspots
When a new protein structure is described, a typical qualitative analysis of the protein involves
identification of protein domains and their molecular function, but many studies also examine the
location of disease-associated mutations in their new 3D context, such as the mapping of disease-
associated mutations in the structure of mitochondrial complex II (90). Beyond these qualitative
discussions of genetic variation in the context of proteins, the earliest quantitative analyses of vari-
ants within proteins focused mainly on the identification of mutational hotspots via the analysis of

148 Li et al.



D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (g

ue
st

) I
P:

  2
05

.1
54

.2
55

.1
39

 O
n:

 T
hu

, 0
5 

Se
pt

 2
02

4 
20

:2
1:

46

Table 1 Overview of relevant methods in genetic variant analysis

Category Reference(s) Method Features Key limitations
Set-based variant
association tests

55 Collapsing/
burden test

Estimates average effect of multiple
rare variants on the trait

Rare variants are assumed to
have the same direction and
magnitude of effect on the
trait

56 SKAT Extends collapsing and burden
tests to allow variants to have
different and opposing directions
of effect on the trait

Does not estimate effects for
singleton variants

57, 58 SKAT-O Improves statistical power of SKAT
by dynamically combining
SKAT and burden tests to
account for singleton effects

Singleton variants are assumed
to have a consistent direction
of effect on the trait

Variant prioritization 66, 67 VAAST/STAAR Dynamically prioritizes rare
variants by their biological
function or pathogenicity

Dynamic weighting of various
annotations makes it difficult
to interpret the precise
biological impact of the
variants influencing the trait

68 PolyPhen2 Uses protein secondary-structure
information to aid variant
consequence prediction

Limited incorporation of protein
structure information in the
overall variant scoring
approach

124 Pathogenic
proximity

Uses 3D protein structure and a set
of known pathogenic variants to
prioritize variants based on
spatial location within the
protein

Requires more than three known
pathogenic variant examples,
which may not exist for all
proteins

125 COSMIS Uses evolutionary constraints
within protein structures to
predict variant impact

Does not account for severity of
amino acid substitutions

3D structure–based
variant
distribution
analyses

115 HotMAPS Estimates somatic mutation density
metric for each residue of a 3D
protein structure

Assumes a uniform null
distribution of variants within
the protein, which may not
hold for all protein structures

113 CLUMPS Identifies mutation clusters in 3D
protein structures using cluster
analysis methods

Sensitive to user-specified
distance thresholds, which can
alter cluster results

114 mutation3D Generates hierarchical clustering
of mutations within 3D protein
structures

Sensitive to user-specified
distance thresholds, which can
alter cluster results

116 HotSpot Identifies somatic mutation clusters
within 3D protein structures
using graph theory metrics

Sensitive to user-specified
distance thresholds, which can
alter cluster results

119 Ripley’s K Detects both clustering and
dispersion of variants using a
spatial statistic over multiple
distance thresholds

Clustering or dispersal patterns
may not be obvious due to
dynamic distance thresholds
used in the test

(Continued)
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Table 1 (Continued)

Category Reference(s) Method Features Key limitations
3D structure–based

association tests
121 POINT Aids single-variant tests by

incorporating the influence of
neighboring variants relative to
the target variant

Computationally intensive and
sensitive to allele frequencies
of analyzed variants

122 PSCAN Hierarchically groups rare variants
into windows based on their
Euclidean distances, and tests
each window against the
phenotype to identify signal
regions of the protein

Relies on underlying SKAT and
collapsing test statistics

123 POKEMON Uses a kernel test to directly
compare the spatial distribution
of rare missense variants among
cases and controls

Unable to pinpoint specific risk
variants within the protein
that are driving the effect

Abbreviations: SKAT, sequence kernel association test; SKAT-O, optimized SKAT; STAAR, set test for association using annotation and information;
VAAST, Variant Annotation, Analysis, and Search Tool.

somatic cancer variants (112–118). Recent work has expanded these analyses to germline variants
(119). The approaches for performing these analyses are closely related to spatial cluster analysis,
with a general approach that first maps missense variants into the 3D space of a protein struc-
ture, and then uses Euclidean distances among all variants to compute a clustering metric. The
statistical significance of the metric is evaluated by generating an empirical null distribution via
resampling a random set of variants across the protein (120).

Several variations of these analyses on somatic variants in cancer have been published.Tokheim
et al. (115) developed the HotMAPS algorithm and applied it to somatic mutations from The
Cancer Genome Atlas. HotMAPS estimates a local mutation density metric for each residue of a
protein by summing the number of missense mutations at a given residue and within 10 Å. From
this analysis, they identified 216 tumor-type-specific hotspot regions in 54 genes and found differ-
ences in the mutational density of oncogenes (more focal) versus tumor-suppressor genes (more
heterogeneous). In contrast to the density-based metric of HotMAPS, Kamburov et al. (113) de-
veloped the CLUMPS approach based on the pairwise Euclidean distances among all variants and
their frequencies. Applied to the PanCancer compendium, CLUMPS identified 50 proteins with
mutations clustering at protein–protein interaction interfaces. Stehr et al. (112) also considered
Euclidean distances among somatic mutations from eight cancer types, but they first divided the
protein into structurally defined domains for clustering analysis.Their spatial analysis results were
used to identify 24 oncogenes and tumor-suppressor genes.Meyer et al. (114) developed a method
called mutation3D, which employs a variant of a complete-linkage (or sometimes called furthest-
neighbor) hierarchical clustering using a user-specified maximum cluster diameter. This approach
is the most liberal in its definition of somatic variant clusters, but it identified many genes from the
Catalogue of Somatic Mutations in Cancer (COSMIC) that are significantly enriched for known
cancer-driver genes. Niu et al. (116) also developed a clustering method called HotSpot on The
Cancer Genome Atlas tumor sequencing data that iteratively defines variant clusters based on Eu-
clidean distance. Their approach identified 38 clusters, 35 of which occurred within known cancer
genes, and recapitulated many known patterns of somatic mutations within cancer proteins.

We developed a framework for testing hypotheses about the 3D spatial distribution of variants
that wasmotivated by Ripley’s K, a spatial statistic used in ecology and epidemiology (119).Ripley’s
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K is computed by identifying mutated residue pairs with a Euclidean distance less than a speci-
fied threshold t. Random samples of residues (of equivalent size to the variant set) are selected
from the protein to generate an empirical distribution for K at a given threshold, and multiple
threshold values are evaluated to generate a distribution of observed K values relative to per-
muted values. This enables the computation of p-values for observed deviations from a random
spatial distribution.We applied the Ripley’s K approach to COSMIC recurrent somatic mutations,
knownMendelian disease variants from ClinVar, and likely benign variants from large sequencing
projects.We identified 25 proteins with significant somatic variant clustering. Applying Ripley’s K
to germline missense variants for Mendelian diseases revealed that disease variants tend to cluster
in 3D space (119).

While each of these approaches used somewhat distinct methods for identifying variant clus-
tering, all methods identified significant clustering of missense somatic mutations within BRAF,
FBXW7, EGFR, and PIK3CA. BRAF, EGFR, and PIK3CA are well-established proto-oncogenes
that are commonly mutated across multiple cancer types, and FBXW7 is a critical tumor suppres-
sor that is also frequently mutated in multiple cancers. The consistency of these findings across
multiple somatic mutation datasets and with multiple methods demonstrates the robustness of the
somatic clustering within these proteins.

Integration of 3D Structure and Population-Scale Genetic Variation Improves
Gene Discovery
The consistent identification of spatial clustering of cancer-driving variants and rare missense
germline disease variants suggests that the position of missense variants within the 3D structure
of a protein could be used to improve disease gene discovery and variant interpretation. Several
methods have recently been developed using protein structure to increase the statistical power
of unit-based rare variant tests, such as POINT (121), PSCAN (122), and POKEMON (123).
Figure 3 illustrates these three approaches applied to a simulated effect within the CSF1R protein
and the information contributed by the spatial distribution of variants.

POINT is a single-variant association test that improves power by borrowing information
from spatially neighboring rare variants (121). For a target variantm, the Euclidean distance to all
other variants is calculated and weighted by a parameter c, which selects and scales the influence of
neighboring variants relative to the target variant (c is adaptively chosen based on the dataset).The
matrix derived from the Euclidean distances is then used within a SKAT or burden framework
to determine the association of a variant with the phenotype of interest (in the context of the
local region of the protein structure). POINT was applied to data from the ACCORD (Action to
Control Cardiovascular Risk in Diabetes) clinical trial and demonstrated associations of PCSK9
variants with low-density lipoprotein cholesterol levels and ANGPTL4 and CETP variants with
high-density lipoprotein (HDL) cholesterol levels, respectively.

In contrast, PSCAN is a unit test evaluating the effects of all rare variants to generate a single
test statistic. PSCAN scans the entire set of variants, hierarchically collapses the variants into
windows based on their Euclidean distances, and tests each window against the phenotype using
either a SKAT or a burden test framework (122). PSCAN returns collections of signal regions,
which are spatially colocated variants that contribute significantly to the trait of interest. PSCAN
was applied to National Heart, Lung, and Blood Institute Exome Sequencing Project data to
examine associations to HDL and triglyceride traits, and to the Alzheimer’s Disease Sequencing
Project data for associations to AD. PSCAN identified several protein regions for AD risk, notably
including the amyloid binding regions of SORL1.

While the POINT and PSCAN approaches explicitly integrate protein structure information
into association tests, both tests are constructed from frequency-based tests and are subject to
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Figure 3
Comparison of POKEMON, PSCAN, and POINT tests, which integrate 3D protein structure for disease
gene discovery. Here, a comparison is made among simulated variants from a case/control study on the
structure of the protein CSF1R (PDB: 2OGV).We simulated a clustering pattern by distributing influential
variants within the core of the protein structure and scaling the variant effects (odds ratios) proportionally to
their distance from the core. We then randomly sampled 20 variants from the protein. The minor allele
frequencies for all the variants were randomly sampled from a log-transformed uniform distribution within
an interval (−4, −2.3), which restricts to variants with minor allele frequencies within the range (0.0001,
0.005) or singletons. The number of case and control subjects was set as 5,000. (a) The cluster of variants in
CSF1R carried mainly by case subjects identified by POKEMON is indicated by red spheres connected with
black dashed lines. The blue spheres represent neutral variants that do not associate with the simulated
phenotype. In the matrix K, riM and riN are blocks within the kernel, representing the genetic similarity
contributed from neutral and risk variants, respectively. The matrix K will be directly used for calculating the
genetic similarly kernel Kg, shown in the equation below, with genotype matrix G and a Blossum62 weight
matrix W. (b) The signal region of CSF1R identified by PSCAN is indicated by red spheres. The diagram
below shows the hierarchical clustering from PSCAN. The variants are clustered hierarchically according to
their 3D position on the protein. Every node in the cluster tree is tested against the phenotype and the
resulting p-values are combined using the Cauchy method to generate a single test statistic for the signal
region. (c) The variant identified as the risk variant by POINT is highlighted in red. Yellow spheres indicate
the neighboring variants contributing to the test of risk variant. The matrix below contains the signal
variant–focused vector, with rii representing the scale weights from the risk variant, while rij+1 and rij−1 are
scale weights for the contribution from neighboring variants to the risk variant. The scale weights are used
to construct a diagonal matrix, which is then used for calculating the genetic similarly kernel Kg. (d) The
pairwise SNV-based K matrix for SKAT, POKEMON, PSCAN (SKAT framework), and POINT (SKAT
framework). For SKAT and POKEMON, the weight matrix is used in the association test. For PSCAN and
POINT, the weight matrix is for the selected signal variant or the signal region. These diagrams demonstrate
how neighboring variants contribute to the test statistic. Abbreviations: PDB, Protein Data Bank ID; SKAT,
sequence kernel association test; SNV, single-nucleotide variant.
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the limitations of SKAT and burden test approaches. In contrast, the POKEMON approach is
a kernel-based test solely based on the spatial distribution of rare missense variants within case
and control subjects, with less emphasis on the variant frequency (123). POKEMON is based on
a kernel matrix of the genetic similarity between two individuals based on the variants they carry.
Pairs of variants are weighted by their distance within a specific protein structure, and spatially
close variants share high weights, while spatially distant variants share low weights. POKEMON
also accounts for the magnitude of amino acid substitutions via the BLOSUM62 matrix. When
used in a case/control analysis, a significant result from POKEMON indicates that case subjects
share more spatially clustered or dispersed rare variants than the controls (or vice versa). While
this test was explicitly designed for extremely low-frequency variants (singletons and doubletons),
the kernel can be combined with the traditional beta-scaled variant frequency kernel employed
in SKAT tests. Similar to PSCAN, the POKEMON structure kernel identified a spatial pattern
of rare variants within SORL1, as well as TREM2, a known AD gene association driven by rare
variants, among others.

Missense Variant Interpretation Using Protein Structure Information
and Population-Based Genetic Variation
The differences in the spatial distribution of Mendelian disease variants and benign missense vari-
ants from population-scale studies suggest that the integration of protein structural information
has great potential for the identification of variants with presumably large effect sizes (e.g., in
rare Mendelian diseases) (119). Illustrating this approach, multiple new VUS for familial inter-
stitial pneumonia were mapped into a homology model of the RTEL1 protein (124). Comparing
spatial proximity to known pathogenic variants relative to putatively benign variants from the
1000 Genomes Project successfully classified five of six disease-segregating VUS as pathogenic.
This basic approach built only on spatial proximity achieved an accuracy competitive with two
other commonly used variant classification tools (PolyPhen2 and evolutionary sequence conser-
vation defined by ConSurf ).

Expanding on this idea, we developed a general method for mapping the tolerance of spatial
neighborhoods in protein structures to genetic variation (125). Using a sequence-context-aware
mutational model and genetic variants observed in more than 100,000 individuals from gnomAD,
we computed an amino acid site–specific score termed COSMIS. This score compares the ob-
served number of missense variants in the connected 3D neighborhood of the site of interest to
the expected number of variants. Sites with significantly fewer variants than expected in their con-
nected 3D neighborhood highlight regions of proteins under substantial functional constraint in
recent human evolution that are thus more likely to lead to dysfunction when disrupted. Using
this approach and leveraging protein 3D structure resources, like the AlphaFold protein structure
database (126), we characterized the 3D spatial constraint on amino acid sites in the human pro-
teome at near proteome scale. We find that the COSMIS score can distinguish pathogenic from
benign variants in many settings and identify highly constrained proteins and amino acid sites that
have not previously been associated with disease phenotypes.

FUTURE ROADMAP
As sequencing studies continue to advance our understanding of genetic variation within the
genomes of diverse individuals, and experimental and computational approaches expand the cat-
alog of protein 3D structures, we have an opportunity to gain a new and deeper understanding
of protein-level variation and its impact on protein function and disease. Characterizing missense
variant effects in the context of protein 3D structures helps identify variants that may cause the
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disruption of native intra- or intermolecular interactions or residue packing in the protein core
(127–130). For example, one fundamental, structural level effect of a missense mutation is that it
may decrease the thermodynamic stability or cause misfolding of the protein, leading to insuffi-
cient cellular abundance of the protein to perform its function. Destabilization or misfolding is
often caused by disruption of native residue packing in the protein core and is a common origin
of inherited diseases (70, 127, 128). Therefore, computational predictions of changes in protein
stability are likely useful for variant interpretation (70, 128). Recent studies also illustrate that
thermodynamic stability may be predictable from the biophysical properties of missense substi-
tutions via deep learning approaches (131), and that it could be incorporated into pathogenicity
predictions.

Quantifying the locations of tolerated missense variants within protein structures provides a
map of recent functional constraint that can inform functional assessments of proteins (125, 132–
134). The current catalog of human population genetic variation is expected to expand further. At
the same time, advanced machine learning techniques are being applied to solve structural biology
problems at a rapid pace (31, 135, 136). These technologies are expected to tremendously expand
our accessibility of the space of protein 3D structures in the near future (137). Thus, merging
genetic variation and protein structure data should be a focus for the community. We anticipate

Variants Genes

Scoring

Other dataStructure

Sequence

Variant priority

Gene priority

High Low

Functional
assays

Computational
modeling and

machine learning

Integration

Figure 4
Integration of multiple sources of data for the prioritization of disease variants and genes. Untangling the
relationship between genotype and phenotype is a complex task and a grand challenge in human genetics.
We propose that integrating multiple sources of data into a heuristic computational framework that uses
machine learning has the potential to generate desirable solutions to this challenge. In this review, we focus
our discussion on sequence variation and 3D protein structure data, as well as saturated mutagenesis data
generated by high-throughput functional assays. However, data sources need not be limited to these; for
example, gene expression and protein–protein interaction networks could also be integrated. Functional
assays play a special role because they can often be synergistically coupled with computation and modeling to
generate insights into variant/gene effects that could not be obtained by either approach alone.
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that new approaches to integrating spatial quantifications of constraint with other complementary
features about protein structure and function will further improve computational variant interpre-
tation methods.

Statistical association tests that incorporate protein information are also in their infancy. In-
formation from a variety of variant-induced molecular changes could be added to these tests.
Advances in our understanding of molecular genetics will inform these tests as well. As most rare
variants are heterozygous (affecting only one of two chromosome copies), advances in modeling
allele-specific expression (138), haploinsufficiency effects (139), and protein translation rates (140)
may explain additional variation in disease risk due to missense variants. In the coming years, these
new types of data, along with sophisticated modeling approaches (Figure 4), will empower a mul-
tiscale view of variant function, providing informative links from the genome, through protein
function, to molecular and disease phenotypes.
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