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Objective: To determine the impact of autoimmunity in the absence of glycemic alterations on 

pregnancy in type 1 diabetes (T1D).

Design: Because nonobese diabetic (NOD) mice experience autoimmunity before the onset of 

hyperglycemia, we studied pregnancy outcomes in prediabetic NOD mice using flow cytometry 

and enzyme-linked immunosorbent assays. Once we determined that adverse events in pregnancy 

occurred in euglycemic mice, we performed an exploratory study using electronic health records 

to better understand pregnancy complications in humans with T1D and normal hemoglobin A1c 

levels.

Setting: University Medical Center.

Patient(s)/Animal(s): Nonobese diabetic mice and electronic health records from Vanderbilt 

University Medical Center.

Intervention(s): Nonobese diabetic mice were administered 200 μg of an anti-interleukin 6 

(IL-6) antibody every other day starting on day 5 of gestation.

Main Outcome Measure(s): Changes in the number of abnormal and reabsorbed pups in NOD 

mice and odds of vascular complications in pregnancy in T1D in relation to A1c.

Result(s): Prediabetic NOD mice had increased adverse pregnancy outcomes compared with 

nonautoimmune mice; blockade of IL-6, which was secreted by endothelial cells, decreased the 

number of reabsorbed and abnormal fetuses. Similarly, vascular complications were increased in 

pregnant patients with T1D across all A1c values.

Conclusion(s): The vascular secretion of IL-6 drives adverse pregnancy outcomes in prediabetic 

NOD mice. Pregnant patients with T1D have increased vascular complications even with normal 

hemoglobin A1cs, indicating a potential effect of autoimmunity on the placental vasculature.
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Pregnancy is an incredible test of immune tolerance, requiring the body to accept foreign 

antigens present in a developing fetus while simultaneously protecting that fetus from 

microbiologic insult—a feat that mandates carefully timed immune cell activation and 

senescence (1). Although the multitude of roles played by lymphocytes in pregnancy are 

still being uncovered, successful pregnancy reflects a balance in which regulatory T cells 

(Tregs) protect the developing fetus, while activated T cells can initiate labor (2). Immune 

evolution during pregnancy includes the development of pregnancy-specific regulatory cells, 

including Tregs that prevent the destruction of male fetuses (3). Given this need for delicate 

and specific immune regulation, it is striking that patients with autoimmune diseases can still 

have largely successful pregnancies. It is generally unknown whether autoimmunity in the 

absence of end-organ damage impedes successful pregnancy, but better understanding may 

present an important opportunity to further improve pregnancy outcomes.

Type 1 diabetes (T1D) is a prototypical and common autoimmune disease in which 

pancreatic β cells in the islet of Langerhans are destroyed. Multiple types of lymphocytes 

collaborate in T1D to cause islet destruction, which contrasts with the protective state 
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achieved during pregnancy. While CD8+ T cells directly damage islets, B lymphocytes 

produce autoantibodies that predict the onset of T1D and initiate cytokine-mediated 

destruction of pancreatic β cells by CD8+ cells (4–6). The collusion between multiple 

different types of leukocytes presents an environment, even before the onset of overt 

diabetes, in which Tregs fail to inhibit autoreactivity (7). Similar to pregnancy, novel 

immune cells can develop throughout the progression of the disease process; in T1D, novel 

cells are autoreactive instead of protective (8). Despite these challenges to immune tolerance 

in pregnant patients with T1D, the immune system manages to protect the foreign antigens 

in a developing fetus even during ongoing autoimmune destruction of pancreatic β cells.

Pregnancy in patients with T1D is associated with increased risks of complications, 

including preeclampsia, premature delivery, congenital malformations, perinatal death, 

and perigestational mortality (9). These risks increase with hyperglycemia (10) but arise 

alongside immune alterations that may independently contribute to these risks. In healthy 

pregnant individuals, peripheral blood lymphocytes decrease; however, in T1D, patients 

exhibit similar pregestational and perigestational lymphocyte counts (11). Cord blood from 

infants delivered by a parent with T1D contains increased Tregs, suggesting an increased 

need for regulatory cells to dampen the immune response (12). While these findings in 

peripheral blood illustrate a difference between patients with T1D and healthy patients, it 

is unknown how these alterations may impact gestation. Using nonobese diabetic (NOD) 

mice, a mouse model of T1D, we studied the placenta to understand how defective tolerance 

may impact gestation at the parental-fetal interface. We then used a large electronic health 

record (EHR) database to explore potential differences in vascular outcomes (including 

preeclampsia, eclampsia, and HELLP [hemolysis, elevated liver enzyme and low platelet] 

syndrome) in pregnant patients with and without T1D across early pregnancy hemoglobin 

A1c levels.

MATERIALS AND METHODS

Animals

C57BL6/J (B6) and NOD/ShiLtJ (NOD) mice were purchased from the Jackson Laboratory. 

Mice were housed and bred in a specific pathogen-free facility at Vanderbilt University 

according to the protocols approved in IACUC M1500016–02.

Mating Protocol

Male mice were housed individually. Three days before mating, bedding from male cages 

was transferred into female cages to induce estrus. In the evening of day 0, 1 female 

mouse was placed into each individual male cage. Mice were separated the next morning at 

day 0.5, and mating was confirmed by the presence of a mucous plug. Experiments were 

performed on day 17.5 of gestation in mice confirmed to be nondiabetic. The gravid uterus 

was examined for evidence of reabsorbed fetuses as well as for pups that appeared normal or 

abnormal (small, aberrant in color, or with obvious fetal anomalies).
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Interleukin-6 Neutralization

Beginning at gestational day 5.5, pregnant dams were treated every 2 days with 200 μg of 

an interleukin 6 (IL-6)-neutralizing antibody (αL-6) injected intraperitoneally (clone MP5–

20F3 #BE0046, BioXCell, Lebanon, NH).

Flow Cytometry

Pregnant dams were euthanized before hysterectomy. Individual placentas were dissected 

from the uterus with the removal of the decidua before manual dissociation and digestion 

in a solution of Hanks’ Balanced Salt Solution + 5% fetal bovine serum (FBS), 1% 0.5-M 

CaCl2, and 10 mg/mL of collagenase P. The placentas were digested at 37°C for 15 minutes 

and quenched with Hanks’ Balanced Salt Solution + 10% FBS. Splenocytes were collected 

by manual dissociation of the spleen. Placental cells or splenocytes were stained with 

the following antibodies: CD45 (30-F11), B220 (RA3–6B2), CD8 (53–6.7), H2Kd (SF1–

1.1), CD21 (7G6), CD49b (DX5), and CD31 (MEC13.1) purchased from BD Bioscience 

(Franklin Lakes, NJ); H2Kb (AF6–88.5.5.3), Foxp3 (FJK-16S), immunoglobulin M (II/41), 

CD23 (B3B4), CD3 (17A2), TCRβ (H57–597), CD19 (eBio1D3), and CD11B (M1.70) 

purchased from eBioscience (San Diego, CA); and CD4 (RM4–4), CD19 (6D5), and CD268 

(7H22-E16) purchased from BioLegend (San Diego, California). The eBioscience Foxp3 

Transcription Factor Staining Kit (#00–5523-00) was used for the detection of Foxp3. 

Splenocytes were used as compensation controls.

Histopathology

Pregnant dams were euthanized, and individual placentas were dissected from the uterus 

with the removal of the decidua. The placentas were placed into cassettes in 10% Formalin, 

processed routinely, and embedded in paraffin, and slides cut at 5 microns were stained 

with hematoxylin and eosin. Immunohistochemistry for B220 (BD Bioscience #553086) was 

performed. Three regions of interest 1.2 mm in diameter were randomly selected for each of 

3 placentas per group, and the total B220+ cell number was counted.

Cytokine Secretion Assay

Pregnant dams were euthanized, and individual placentas were dissected from the uterus 

with the removal of the decidua. Manually dissociated placentas were plated overnight 

in 5% Dulbecco’s Modified Eagle’s Medium cell culture media (with 10% FBS, 

penicillin/streptomycin, and β-mercaptoethanol) with 1 μM of R848 (#73782 STEMCELL 

Technologies, Vancouver, Canada) and 8 μg/mL of αCD3/αCD28 (BD #553057 and 

#553294). After 12 hours of stimulation, GolgiStop (BD #554724) was added at a 

concentration of 0.66 μL/mL of cell culture media. Six hours after the addition of GolgiStop, 

cells were harvested and stained using a Cytofix/Cytoperm Plus Fixation/Permeabilization 

Kit (BD #554715). Cells were stained for extracellular markers as listed earlier with IL-6 

(MP5–20F3) from eBioscience.

Cytokine Array and Enzyme-Linked Immunosorbent Assay

Pregnant dams were euthanized, and amniotic fluid was collected from healthy-appearing 

fetuses by inserting a heparinized tube (#02–668-10, ThermoFisher Scientific, Waltham, 
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MA) into the amniotic sac. Amniotic fluid was collected in microcentrifuge tubes and 

centrifuged for 8 minutes at 6,800 rcf to pellet red blood cells. Amniotic fluid was stored 

at −80°C, before analysis for cytokines and IL-6. Samples were sent to Eve Technologies 

(#MD31 Mouse Cytokine 32-Plex, Calgary, Alberta, Canada) for a cytokine array. The IL-6 

level was measured using an IL-6 enzyme-linked immunosorbent assay (ELISA) kit (BD 

#555240).

Mouse Data Analysis

Mouse data were analyzed with GraphPad Prism version 9.2.0. An unpaired Student’s t test 

with Welch’s correction was used to compare differences between 2 groups. For multiple 

groups, a one- or two-way analysis of variance with Šidák’s multiple-comparison post hoc 

test was used. Statistical values with P≦.05 were considered significant.

EHR Data and Phenotyping

With approval from Vanderbilt University Medical Center (VUMC) (Institutional Review 

Board #212013), we accessed VUMC’s deidentified database of EHRs (>3.1 million 

patients) and assembled a pregnancy cohort with T1D status and vascular complications 

during pregnancy. For each patient, we used billing codes that included International 

Classification of Diseases, 9th/10th Revision, Clinical Modification (ICD-9/10-CM) and 

Current Procedural Terminology to demarcate the first pregnancy and delivery, ascertain 

T1D status, and identify vascular complications. The EHRs of this cohort ranged from 

September 10, 1988 to December 30, 2020.

To demarcate the first pregnancy within an EHR, we required at least 1 billing code for 

delivery no more than 45 weeks after a billing code indicative of prenatal care. To avoid 

correlation among outcomes derived from the same individual with multiple pregnancies, 

we considered only the first pregnancy recorded in the EHR. Next, we used a validated and 

accurate phenotyping algorithm (13) that incorporated billing codes, clinical laboratories, 

and diabetes-related medications to ascertain patients with T1D diagnosed before prenatal 

care as determined by first prenatal billing code. We assigned an A1c value measured closest 

to and within 3 months of the billing code indicative of prenatal care (14). To identify 

pregnancies with vascular complications, we required patients to have at least 1 Phecode 

v2 (15, 16), a condensed and expert curated set of diagnoses mapped from the ICD-9 and 

ICD-10 codes, for vascular phenotypes as specified in Supplemental Table 1 (available 

online) occurring between 9 months before delivery and 3 months after delivery. All other 

billing codes and phecodes used for phenotyping are provided in Supplemental Tables 2 and 

3 and at https://github.com/abraham-abin13/a1c_pregnancy_outcomes.git.

Association of the A1c Level With Vascular Outcomes

Our exposure of interest was T1D status before the first recorded pregnancy’s delivery 

date. Our outcomes included a composite of vascular phenotypes (Supplemental Table 1) 

and preeclampsia, eclampsia, or HELLP syndrome. We assessed for effect modification 

between T1D and hemoglobin A1c at each participant’s first recorded prenatal visit in the 

EHR using an interaction term. We adjusted for covariates that may have confounded the 

relationship between T1D and the outcome. These included EHR-collected race (White, 
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Black, unknown, Asian, or Native American), age at the first pregnancy encounter, and 

socioeconomic status (17, 18). Further discussion about covariate selection is found in the 

supplemental methods (available online) (19–32).

Individuals without T1D were missing hemoglobin A1c values by design. We, therefore, 

imputed them randomly from a normal distribution that reflected the population mean A1c 

value among individuals without T1D (mean of 5.3, standard deviation of 0.1) (33, 34). 

Imputing from a normal distribution enabled computational convergence for regression 

models. We then performed 35 multiple imputations with chained equations with the 

exposures, covariates, and outcomes to account for missing covariate data (34). Finally, 

we used logistic regression to assess the probability of each outcome by T1D status 

(with A1c fixed to 5.3 in individuals without T1D), modified by A1c, controlled for the 

aforementioned covariates pooled across the imputed datasets (34). A1c was modeled as 

a restricted cubic spline with 3 knots given existing evidence that A1c has a nonlinear 

relationship with vascular outcomes (35). Other continuous covariates were modeled as a 

linear relationship given the small number of outcomes. Analyses with EHR data were 

performed using Python v3.8 with Pandas v1.3.4 (36) and NumPy v1.19 (37) and R 
Statistical Software (version 4.1.0). Python and R code is available at https://github.com/

abraham-abin13/a1c_pregnancy_outcomes.git.

RESULTS

The Uterine Environment in NOD Mice is Associated With Poor Fetal Outcomes and 
Abnormal Placental Lymphocytes

We assessed the impact of autoimmunity in gestation by crossing B6 and NOD mice 

to create genetically identical litters. Nonobese diabetic mice, which spontaneously 

develop both anti-islet autoimmunity and overt diabetes, were used before the onset of 

hyperglycemia to isolate the effects of autoimmunity like the presence of autoreactive 

lymphocytes and autoantibodies. Mice were either paired as B6 females mated with NOD 

males (B6♀NOD♂) or NOD females mated with B6 males (NOD♀B6♂). Litters from 

these pairings differ only by the uterine environment in which pups gestate. The NOD 

(NOD♀B6♂) uterine environment resulted in increased reabsorbed and abnormal pups 

compared with B6♀NOD♂ litters (Fig. 1A and B). Whereas 98% of B6♀NOD♂ fetuses 

were normal, only 67% of NOD♀B6♂ fetuses appeared normal. Flow cytometric evaluation 

of placental immune cells revealed alterations in the immune cell compartment. NOD♀B6♂ 
placentas had a lower percentage of CD8+ cells of total cells (P=.003) and an even greater 

decrease in CD19+ cells than B6♀NOD♂ (P=.0002); these findings in allogenic B6♀NOD♂ 
and NOD♀B6♂ pairings were similar to those in syngenic B6♀B6♂ and NOD♀NOD♂ 
pairings, respectively (Fig. 1C). Histologic examination corroborated the decrease in B cells 

associated with the NOD maternal environment (Fig. 1D and E). We assessed whether 

the alterations in immune cells were due to maternal or fetal abnormalities by staining 

for the B6 major histocompatibility complex class I, H2Kb, on immune cells in allogenic 

NOD♀B6♂ pairs. In the placenta, as validated with uterine-draining lymph nodes, peripheral 

blood mononuclear cells, and spleen, all immune cells were H2Kd+, indicating that the cells 

were maternal and not fetal in origin (Fig. 1F). In summary, we conclude that the changes 
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in maternal lymphocytes are associated with the abnormal gestational environment in NOD 

mice that results in larger numbers of abnormal and reabsorbed pups.

NOD Amniotic Fluid Contains Increased IL-6 Secreted by Endothelial Cells

To better understand potential etiologies of adverse pregnancy outcomes in NOD mice, 

we used a multicytokine array to investigate the cytokines present in amniotic fluid (Fig. 

2A). Amniotic fluid from the NOD uterus (both NOD♀NOD♂ and NOD♀2B6♂) contained 

increased levels of IL-6 family members, including IL-6, leukemia inhibitory factor, and 

monocyte chemotactic protein-1 (Fig. 2B). Increased IL-6 secretion into NOD amniotic 

fluid was confirmed by ELISA, with significant increases in NOD♀NOD♂ compared with 

B6♀B6♂ (P=.0059) as well as NOD♀B6♂ compared with B6♀NOD♂ (P=.05) (Fig. 2C). 

To identify the specific cell type secreting IL-6, the placentas were activated by R848 

and αCD3/αCD28 in cell culture overnight and then incubated with GolgiStop to retain 

intracellular cytokines. We found that IL-6 was secreted by multiple cell types, notably 

including Foxp3+ Tregs and CD31+ endothelial cells (Fig. 2D). NOD\B6_ placentas 

showed increased IL-6 secretion by CD4+ cells, including Foxp3+ Tregs, and by CD31+ 

endothelial cells (Fig. 2E). Further examination revealed that NOD♀B6♂ endothelial cells 

were increased in both number and IL-6 mean fluorescence intensity (Fig. 2F). These data 

identify IL-6 secretion by endothelial cells in the placenta as a possible mechanism of the 

adverse pregnancy outcomes in NOD mice.

Neutralization of IL-6 Improves Outcomes in NOD Pregnancies

Aberrant IL-6 levels are associated with several pregnancy-related diseases and can 

be harmful when insufficient or in excess (38–41). Given the increased baseline IL-6 

level in NOD amniotic fluid, we investigated the impact of decreasing IL-6 levels by 

administering an IL-6-neutralizing antibody (αIL-6) throughout gestation. The impact 

of IL-6 neutralization varied greatly with uterine environment; outcomes worsened for 

B6♀NOD♂, whereas NOD♀B6♂ litters benefited from decreased IL-6 levels, with fewer 

reabsorbed fetuses and abnormal pups (Fig. 3A and B). While 64% of fetuses from 

B6♀NOD♂ pairings treated with αIL-6 appeared normal, 93% of fetuses NOD♀B6♂ treated 

with αIL-6 appeared normal. The administration of αIL-6 decreased the amniotic fluid 

IL-6 levels in NOD♀B6♂ to levels similar to untreated B6♀NOD♂ pairings (Fig. 3C). 

Increased IL-6 levels in NOD♀B6♂ mice are correlated with a significant increase in the 

IL-6-secreting CD31+ cells compared with those in B6♀NOD♂ pairs (P=.0009) (Fig. 3D), 

but αIL-6 treatment did not alter the number of CD31+ cells in either B6♀NOD♂ or 

NOD♀B6♂ pairs. CD31 has been well established as a regulator of leukocyte transmigration 

that aids in the emigration of inflammatory leukocytes into target tissue (42–44). We found 

decreased DX5+ natural killer (NK) cells in NOD♀B6♂ placentas compared with those 

in B6♀NOD♂ placentas (P=.0113) (Fig. 3E); this alteration was partially restored by the 

administration of αIL-6. We conclude that the increased IL-6 levels from CD31+ cells in 

NOD mice has a harmful effect on gestation; furthermore, the increased CD31+ cell number 

is correlated with a decrease in NK cells.
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Patients With T1D, Across all Early Pregnancy Hemoglobin A1cs, Display Increased 
Vascular Complications in Pregnancy

While the NOD mouse spontaneously develops diabetes like individuals with T1D, our 

studies identified changes in the placenta and uterine environment before the onset of 

hyperglycemia. Studies in patients with T1D have reported increased risks of vascular 

complications like preeclampsia (45), but the impact of normal or target A1c on vascular 

complications remains poorly understood relative to the general pregnant population. Using 

the EHR at VUMC, we identified 354 pregnant individuals with and 45,467 without T1D. 

Among pregnant individuals with T1D, 55 (15.5%) experienced a vascular complication 

in pregnancy compared with 3,633 (8%) of those without T1D (Supplemental Table 1 

and Table 4). Given the reported increased risk of adverse vascular outcomes with higher 

preconception A1c (9, 10, 46), we hypothesized that hemoglobin A1c early in pregnancy 

modifies the probability of adverse vascular outcomes. We found that patients with T1D 

have an increased likelihood of experiencing vascular complications in pregnancy regardless 

of their A1c (Fig. 4A). Even at a normal A1c level of 5.5, pregnant individuals with T1D 

had increased odds (2.17; 95% confidence interval [CI], 1.3–3.62) of vascular pathology 

relative to patients without T1D (Fig. 4B). Furthermore, we found that pregnant individuals 

with T1D were more likely to experience preeclampsia, eclampsia, or HELLP syndrome 

relative to patients without T1D regardless of their A1c (Fig. 4C). Notably, the odds 

of developing preeclampsia, eclampsia, or HELLP syndrome were increased (4.02; 95% 

CI, 2.2–7.33) even at a normal A1c level of 5.5 (Fig. 4D). Figure 4A and C show the 

shape of the relationship between A1c and each outcome among individuals with T1D. 

While we detected increased probabilities of adverse vascular outcomes regardless of A1c, 

the small cohort size resulted in wide CIs at higher A1c levels. Thus, the probability of 

adverse vascular outcomes may increase more dramatically at higher A1c values than shown 

in Figure 4A and C. Even so, the increase in vascular complications at a normal A1c 

level compared with the general population shows an effect independent of glycemia on 

pregnancy outcome.

DISCUSSION

This study reveals the precarious nature of pregnancy in T1D. Previous work has failed 

to tease apart the impacts of hyperglycemia from those attributable to an autoimmune 

environment; furthermore, previous studies examining peripheral or cord blood lymphocytes 

revealed cell alterations that were understudied at the actual parental/fetal interface. The 

mechanism by which patients with T1D experience increased complications in pregnancy 

remains to be elucidated.

We show that NOD mice have an increased prevalence of abnormal and reabsorbed fetuses. 

Using flow cytometry, immunohistochemistry, and ELISA, we found that genetically 

identical fetuses have disparate outcomes determined by the uterine environment, illustrated 

by alterations in placentallymphocytes and cytokines. The immune cell environment in 

B6♀NOD♂ and NOD♀B6♂ mice mirror those of their syngenic B6♀B6♂ and NOD♀NOD♂ 
counterparts (Supplemental Figs. 1 and 2). Notably, NOD♀NOD♂ and NOD♀B6♂ mice had 

decreased placental B lymphocytes, with deficits in both follicular and marginal zone B 
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lymphocytes (Supplemental Fig. 3A). In contrast, other organs in NOD mice host expanded 

marginal zone B lymphocytes that present autoantigen to T cells (47).The absence of these 

diabetogenic B lymphocytes from the placenta underlies the tolerogenic tendencies of the 

uterus and gestation-associated lymphocytic changes. Previous work proposed that B cells 

function in the placenta predominantly as anti-inflammatory secretors of IL-10 (48); the B 

lymphocytes found in the NOD uterus do not appear to be secreting IL-10 (Supplemental 

Fig. 3B). As B lymphocytes play an important role in the pathogenesis of T1D, it is tempting 

to speculate that their absence from the placenta is required for the fragile tolerance 

developed in pregnancy.

Interestingly, our studies also implicated a common culprit in adverse pregnancy outcomes, 

IL-6. Both insufficient and excess IL-6 have been associated with poor prognosis, and 

increased levels of IL-6 family members like leukemia inhibitory factor are required for 

pregnancy (49). Notably, IL-6 secretion from endothelial cells is increased in patients 

with preeclampsia (41, 50), which decreases the activity of Foxp3+ CD4+ Tregs (51, 52). 

Localizing the increased IL-6 secretion to CD31+ cells, which are found to be increased 

in NOD♀B6♂, may explain the increased levels of IL-6 present in NOD♀B6♂ amniotic 

fluid. CD31 on endothelial cells aids in leukocyte transmigration; the presence of increased 

CD31+ cells in NOD mice may promote the translocation of inflammatory cells into the 

placenta and worsen pregnancy outcomes (42, 44, 53). In contrast, decidual DX5+ NK cells 

are beneficial in pregnancy and aid in remodeling spiral arteries (54). Nonobese diabetic 

mice may be subject to a deleterious cycle in which inflammatory IL-6-secreting CD31+ 

cells increase due to a lack of sufficient NK cells.

Our findings identifying the pathologic effect of IL-6 secretion by endothelial cells in 

prediabetic NOD mice may reflect the interplay between vascular changes in autoimmune 

pregnancy and the increased prevalence of preeclampsia in patients with T1D (55). As 

patients with T1D are not treated with immunosuppressive medications, the impact of 

autoimmunity on pregnancy is important but previously unknown. When we examined 

the prevalence of vascular complications in human pregnancy, we noticed an increased 

proportion of patients with T1D and vascular complications across all A1cs. These data 

indicate that adverse events in T1D pregnancy cannot purely be tied to glycemic control 

and suggest a role for abnormal or autoimmunity in pregnancy. While pregnant patients with 

T1D may have underlying vascular disease that contributes to preeclampsia, we expect the 

risk of this underlying pathophysiology to be spread across the cohort or even more heavily 

affecting patients with the highest A1c levels. Our finding of increased risk at patients 

with target A1cs indicates that the underlying effects of autoimmunity may exacerbate 

the inflammatory effects of preeclampsia. Further studies may allow for a mechanistic 

understanding of how vascular complications arise in euglycemic patients with T1D.

While we identified gestational complications in the NOD mouse that are correlated with 

findings in patients with T1D, our studies were limited by several factors. We were unable 

to capture data from reabsorbed mouse fetuses; our data may represent a survival bias in 

fetuses that survived to preterm gestation. Furthermore, all placentas from each individual 

mouse were averaged together; some of the diversity in phenotypes of individual mouse 

placentas may reflect the diversity in disease onset or severity in adult mice. Because fetal 
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mice were sacrificed for placental examination, we were unable to follow them to adulthood 

to monitor for diabetes onset. Autoimmune features are more present in female NOD mice 

than in male NOD mice, which minimizes the effect of paternal autoimmunity on this study 

that was designed to investigate the effects of autoimmunity on the uterine environment 

in the presence of genetically identical pups. Additionally, while we were as restrictive as 

possible while collecting information from the EHR, we may have an incomplete dataset 

because of the inconsistent usage of billing codes. Our control group also likely included 

individuals with other autoimmune conditions or metabolic conditions, which would have 

biased our effect estimates toward nonsignificance. We have included a detailed discussion 

of study design and bias considerations inherent to this type of analysis in the supplement. 

While the low number of included pregnant individuals with T1D and adverse vascular 

outcomes makes it difficult to accurately assess risk at higher A1c levels, we are confident 

in the findings at lower A1c levels that are directly related to our hypothesis of an increased 

risk of vascular complications at lower A1c levels. Regardless, the clinical information 

we gathered and analyzed revealed a strong signal of an effect that builds on previous 

knowledge of complications in humans with T1D.

CONCLUSION

In conclusion, our study describes alterations in the placental immune compartment from 

fetuses gestated in a prediabetic NOD mouse. These alterations coexist with an increase in 

the inflammatory IL-6 levels secreted by endothelial cells, the alleviation of which allows 

for better fetal outcomes. Our findings in mice are correlated with clinical information 

from patients showing an increase in vascular complications even with normoglycemic A1c 

levels. This work sets the stage for further investigation of the mechanism of collaborative 

immune and vascular dysfunction in pregnancy in T1D.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Adverse pregnancy outcomes in NOD pregnancy and the associated pregnancy immune 

phenotypes for B6 and NOD crosses. (A) Composite pregnancy outcomes for B6♀NOD♂ 
and NOD☥B6♂ mice. Of 18 B6♀NOD♂ litters, 2 of 123 fetuses are reabsorbed, and no 

fetuses are abnormal. Of 17 NOD☥B6♂ litters, 35 of 143 fetuses are reabsorbed, and 12 of 

143 fetuses are abnormal. (B) Representative images of B6☥NOD♂ (left) and NOD☥B6♂ 
(right) litters. Outlined in purple are 4 abnormal fetuses (small and pale); additionally, 2 

reabsorbed fetuses are outlined in gray. (C) Immune cells as the percentage of total cells 
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in the B6☥NOD♂ (n = 5) and NOD☥B6♂ (n = 4) placenta, shown with B6♀B6♂ and 

NOD♀NOD♂ pairings. As a percentage of total cells, NOD♀B6♂ litters have decreased 

CD8+ cells (P=.003) and CD19+ cells (P=.0002). Each dot represents 1 mouse pregnancy 

with an average of all placentas analyzed from that mouse. (D) Immunohistochemical 

staining of B6♀NOD♂ (left) and NOD♀B6♂ (right) placentas for B220. Arrows illustrate 

positive cells. (E) Graphical representation of the number of B220+ cells per 1.2-mm2field 

of view. Each point represents the average of 3 random 1.2-mm2 circles per placenta (n = 3). 

Nonobese diabetic mice have decreased B220+ B cells. (F) Lymphocytes in the placentas of 

NOD♀B6♂ mice are maternal. Flow plots from an NOD♀B6♂ litter with H2kd (NOD major 

histocompatibility complex class I) vs. H2Kb (B6 major histocompatibility complex class I) 

show that in the placenta, lymph nodes, peripheral blood mononuclear cells, and spleen, all 

cells are H2Kd+ and, therefore, maternally derived. NOD = nonobese diabetic.
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FIGURE 2. 
Cytokine analysis reveals increased interleukin-6 (IL-6) levels in NOD litters. (A) Selected 

cytokines from an unbiased cytokine array showing levels in amniotic fluid in picograms per 

milliliter. (B) Graphical representation of the levels of IL-6 family members from cytokine 

array (n = 3 per mouse pairing). NOD♀NOD♂ and NOD♀B6♂ litters have increases 

in IL-6, leukemia inhibitory factor, and monocyte chemotactic protein-1 levels. (C) The 

increase in the IL-6 level in amniotic fluid from NOD mice is confirmed via enzyme-linked 

immunosorbent assay, where each point represents amniotic fluid from 1 mouse uterus. 
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(D) The placentas from B6♀NOD♂ and NOD♀B6♂ litters are stimulated with R848 and 

αCD3/αCD28 overnight and then incubated with GolgiStop for 4 hours to capture cytokine 

secretion. Interleukin-6 secretion from CD4+, Foxp3+, B220+, CD11b+, and CD31+ cells 

shows that the most IL-6 secretion is coming from CD31+ endothelial cells. (E) Percentage 

of CD4+, Foxp3+, B220+, CD11b+, and CD31+ of IL-6-secreting cells, where each point 

represents 1 placenta. Of IL-6-secreting cells, CD31+ cells had the largest percentage in 

both B6♀NOD♂ and NOD♀B6♂ litters. (F) The histogram of all placentas per B6♀NOD♂ 
litter (blues) and NOD♀B6♂ litter (pinks) shows that on average, NOD♀B6♂CD31+ cells 

have an increase in stored IL-6. IL = interleukin; NOD = nonobese diabetic; SSW = side 

scatter width; TNFα= tumor necrosis factor-α.
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FIGURE 3. 
Impact of treatment with 200 μg of an interleukin-6 (IL-6)-neutralizing antibody (αIL-6) 

every other day starting on day 5 of gestation. (A) B6♀NOD♂ and NOD♀B6♂ mice 

that were treated with anti-IL-6 have vastly different responses to treatment. Of 5 

B6♀NOD♂+αIL-6 litters, 10 of 34 fetuses are reabsorbed, and 2 of 34 fetuses are abnormal. 

Of 10 NOD♀B6♂+αIL-6 litters, 4 of 83 fetuses are reabsorbed, and 2 of 83 fetuses are 

abnormal. B6♀NOD♂ + αIL-6 litters have increased reabsorbed and abnormal fetuses, 

both relative to B6♀NOD♂ and NOD♀B6♂ + aIL-6 litters. (B) Representative images of 

B6♀NOD♂ and NOD♀B6♂ litters after anti-IL-6 treatment. The pictured B6♀NOD♂ litter 

has 1 abnormal fetus, outlined in purple, and 2 reabsorbed fetuses, outlined in gray. (C) 

The administration of αIL-6 decreases the levels of IL-6 present in amniotic fluid, where 

each point represents amniotic fluid from 1 mouse uterus. (D) Both NOD♀B6♂ without 

treatment and treated with αIL-6 have a significant increase in placental CD31+ endothelial 

cells relative to B6♀NOD♂ mice. Each dot represents 1 mouse pregnancy with an average 

of all placentas analyzed from that mouse. (E) NOD♀B6♂ mice have significantly fewer 

placental DX5+ NK cells relative to B6♀NOD♂ mice, which may have normalized with 

αIL-6 treatment. Each dot represents 1 mouse with an average of all placentas analyzed 

from that mouse. NOD = nonobese diabetic.
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FIGURE 4. 
Electronic health record data illustrating differences in vascular outcomes in patients with 

type 1 diabetes (T1D) compared with the general population regardless of A1c. (A) 

Proportion of pregnant patients with a vascular complication in the general population (black 
line) and with T1D (gold line with 95% confidence interval [CI]). (B) When stratified by 

hemoglobin A1c at the first recorded antenatal visit, patients with T1D have an increased 

odds ratio (OR) of a vascular complication across all A1c values. The ORs are calculated for 

a pregnant person with T1D and A1c levels of 5.5, 6.5, 7.5, and 8.5. relative to a pregnant 

person without T1D with an A1c level of 5.5. (C) Proportion of patients with phecodes for 

preeclampsia, eclampsia, or HELLP syndrome in the general population (black line) and 

with T1D (gold line with 95% CI). (D) When stratified by hemoglobin A1c near conception, 

patients with T1D have an increased OR of preeclampsia, eclampsia, or HELLP syndrome 

across all A1c values. The ORs are calculated for a pregnant person with T1D and A1c 

levels of 5.5, 6.5, 7.5, and 8.5. relative to a pregnant person without T1D with an A1c level 

of 5.5. CI = confidence interval; HELLP = hemolysis, elevated liver enzymes, low platelets; 

OR = odds ratios; T1D = type 1 diabetes.
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