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OBJECTIVE To help guide empiric therapy for kidney stone disease, we sought to demonstrate the feasibility of
predicting 24-hour urine abnormalities using machine learning methods.

METHODS We trained a machine learning model (XGBoost [XG]) to predict 24-hour urine abnormalities
from electronic health record-derived data (n = 1314). The machine learning model was com-
pared to a logistic regression model [LR]. Additionally, an ensemble (EN) model combining both
XG and LR models was evaluated as well. Models predicted binary 24-hour urine values for vol-
ume, sodium, oxalate, calcium, uric acid, and citrate; as well as a multiclass prediction of pH. We
evaluated performance using area under the receiver operating curve (AUC-ROC) and identified
predictors for each model.

RESULTS The XG model was able to discriminate 24-hour urine abnormalities with fair performance, com-
parable to LR. The XG model most accurately predicted abnormalities of urine volume
(accuracy = 98%, AUC-ROC = 0.59), uric acid (69%, 0.73) and elevated urine sodium (71%,
0.79). The LR model outperformed the XG model alone in prediction of abnormalities of urinary
pH (AUC-ROC of 0.66 vs 0.57) and citrate (0.69 vs 0.64). The EN model most accurately pre-
dicted abnormalities of oxalate (accuracy = 65%, ROC-AUC = 0.70) and citrate (65%, 0.69)
with overall similar predictive performance to either XG or LR alone. Body mass index, age, and
gender were the three most important features for training the models for all outcomes.

CONCLUSION Urine chemistry prediction for kidney stone disease appears to be feasible with machine learning
methods. Further optimization of the performance could facilitate dietary or pharmacologic pre-
vention. UROLOGY 169: 52−57, 2022. © 2022 Elsevier Inc.

Kidney stones are common and after an index stone
event, recurrence rates can be as high as 50%.1,2

Clinical guidelines recommend metabolic testing
with one or two 24-hour (24H) urine collections to guide
selective pharmacologic and dietary interventions to miti-
gate repeat stone events.3 In practice, however, 24H urine
collection rates are low overall.4 In addition, testing may
not be available in certain health care settings or covered
by insurance, while others do not have access to testing.

Accurate methods for prediction of 24H urine analyte
abnormalities by using demographic and clinical elec-
tronic health record-derived (EHR) data have the poten-
tial to enable identification of patients for whom 24H
urine testing would most likely reveal an abnormality that
could be targeted by empiric dietary or pharmacotherapy.

Prior studies have demonstrated limited accuracy of
logistic regression (LR, 64%) in the prediction of 24H
urine parameters using EHR-derived data.5 Machine
learning methods may be preferable for the analysis of
EHR data and improve the prediction of 24H urine
parameters. Specifically, machine learning models, such as
boosted decision trees, build mathematical algorithms
from raw, labeled training data to classify predictor signifi-
cance. Training of these algorithms is not predicated on
predictor significance, making machine learning techni-
ques robust in the analysis of non-linear data, such as
EHR data. We previously demonstrated the utility of
machine learning techniques in prediction of stone com-
position from clinical parameters.6 However, machine
learning methods have not been created for the prediction
of 24H urine abnormalities from EHR-derived data.
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Within this context, we sought to develop machine
learning models for predicting 24H urine abnormalities
from EHR- derived data using a single-institution cohort
of patients with kidney stone disease. To accomplish this,
we trained and compared both a boosted decision tree
(XGBoost, XG) and a logistic regression (LR) machine
learning models from EHR-derived clinical and demo-
graphic data to predict 24H urine abnormalities. We addi-
tionally sought to identify which clinical and
demographic predictors most significantly predicted 24H
urine abnormalities in each model.

MATERIALS AND METHODS

Patient Cohort
After local institutional review board approval, we performed a
retrospective review of all adult patients with kidney stone dis-
ease who completed 24H urine evaluation at our institution
between 2009-2019 (N = 1314). We extracted demographic
and clinical data using a semi-automated data extraction tool
from our cohort using our an institutionally maintained database
of the entire electronic health record.7−9 We extracted demo-
graphic and clinical data from the EHR using a semiautomated
data extraction tool.10,11 Demographic information recorded
included age at time of 24H urine testing, gender, body mass
index (BMI) and race. We extracted clinical predictors associ-
ated with kidney stone risk based on the International Classifica-
tion of Disease coding (See Appendix Table 1). Stone
composition analysis was determined from an external laboratory
using infrared spectroscopy (Beck Laboratories, Greenwood,
IN). If stone composition was mixed, the stones were categorized
by highest percentage composition. We also identified whether
patients had been prescribed an alkalinizing agent, allopurinol
or a thiazide diuretic (see Appendix Table 2).

24H Urine Parameters
All 24H urine testing was conducted by an external laboratory
(Litholink Corporation, Chicago, IL), and only adequate collec-
tions based on sex-specific creatinine per kilogram (Cr24/kg)
measurements were included in this study. If patients had multi-
ple 24H urine studies, we identified the study temporally closest
to a stone event (ie stone surgery or spontaneous passage of
stone). We extracted the following individual urine parameters
from the 24H urine study: urine volume (Vol24) calcium
(Ca24), oxalate (Ox24), citrate (Cit24), UA (UA24), sodium
(Na24), and urine pH.4

Models for Predicting 24H Urine Abnormalities
We evaluated whether a gradient boosted decision tree
(XGBoost version 0.81, XG) could predict 24H urine abnormal-
ities. XGBoost leverages many decision trees for prediction and
penalizes incorrect predictions from previous decision trees.12

Boosted decision trees are particularly robust for the non-linear
correlation of predictors, such as EHR-derived data.

We trained our XG model using the EHR-derived predictors
described above. Race and gender were categorically encoded.
Clinical predictors and medication exposure were encoded as
binary variables. All other predictors were treated as continuous
variables.

Then, for the outcomes of interest, we classified values for vol-
ume, sodium, oxalate, calcium, and uric acid binarily (ie normal

vs high), as well as citrate (ie normal vs low). We categorized
pH values via multiclass categorization (ie low, normal, high).
The reference ranges for laboratory values were derived from
prior studies evaluating 24H urine chemistries as used by the spe-
cialized laboratory used for analysis (Litholink Corporation, Chi-
cago, IL) (Appendix Table 3).13

We randomly divided the data with equal proportions of each
urine abnormality into a training (80%) and validation cohort
(20%). Standardized hyperparameters were optimized using
Bayisan techniques.14

We trained logistic regression (LR) models using the same
cohort for the XG models but did not perform any hyperpara-
meter tuning. We evaluated LR model performance using the
respective validation cohort. As XG and LR may each individu-
ally rely on few predictors, we evaluated whether or not combin-
ing XG and LR in an ensemble model (EN) would improve
performance.13 Specifically, we trained EN using predictions
from the initial XG and LR models as inputs into a meta-model
(also logistic regression) to predict 24H urine abnormalities
(Fig. 1). Then, we similarly evaluated the EN models using the
validation cohort.

Evaluation Metrics
The primary outcomes were accuracy and area under the receiver
operating curve (AUC-ROC) for the prediction of 24H urine
abnormalities for each model. Secondary outcomes included the
significance of each EHR-derived variable used to train the mod-
els via Shapley Additive Explanation (SHAP, v0.35) score.14

SHAP scores represent the relative contribution of each predic-
tor used for classification based on the log-odds units of change
in prediction. All analysis was conducted with Python v3.8.15

RESULTS
The EHR-derived predictors used for model training are pre-
sented in Table 1. Of the 1314 patients included for analysis,
the patients were primarily white (91%) with the most common
comorbidities being hypertension (54%), gastroesophageal reflux
disease (GERD, 36%), and hyperlipidemia (28%). Only a
minority of patients were on any medical therapy for kidney
stone disease with an alkalinizing agent (9%), a thiazide diuretic
(7%) or allopurinol (4%). Predominant stone compositions
included calcium oxalate (67%), hydroxyapatite (18%), carbon-
ate apatite (2%), uric acid (8%), and other (ie struvite or cystine
stones, 5%). The most common abnormality seen on 24H urine
testing was high urine sodium (61%), followed by hypocitraturia
(45%), low urine pH (44%), hypercalciuria (41%), hyperoxalu-
ria (37%), high urine pH (31%), and hyperuricosuria (23%)
(Appendix Table 3).

We evaluated the XG and LR models’ ability to classify each
identified 24H urine parameter as normal or abnormal, and then
combined them in an EN model (Fig. 1). The XG model was able
to discriminate 24-hour urine abnormalities with fair performance
that was comparable to LR (Fig. 2, Appendix Fig. 1). The XG
model most accurately predicted abnormalities of urine volume
(accuracy = 98%, AUC-ROC = 0.59), uric acid (69%, 0.73) and
elevated urine sodium (71%, 0.79). The LR model outperformed
the XG model alone in prediction of abnormalities of urinary pH
(AUC-ROC of 0.66 vs 0.57) and citrate (0.69 vs0.64). The EN
model most accurately predicted abnormalities of oxalate
(accuracy = 65%, ROC-AUC = 0.70) and citrate (65%, 0.69)
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with overall similar predictive performance to either XG or LR
alone.

For each 24H urine abnormality, different sets of predictors
were prioritized for the final prediction by the XG model
(Table 2). Overall, BMI was the most significant predictor for
each 24H urine abnormality. Other top predictors included age,
male gender, and calcium oxalate stone composition. Race was
not deemed to be an important predictor of 24H urine abnor-
mality by the model.

DISCUSSION
We found that machine learning models can feasibly pre-
dict metabolic urine chemistry abnormalities of kidney
stone patients using demographic, clinical, and stone
composition predictors. Specifically, the XG model out-
performed the LR model for prediction of abnormalities of
urine volume, uric acid and sodium concentrations. How-
ever, the LR model outperformed the XG model in pre-
diction of abnormalities of urinary citrate and pH.
Combination of the models in the EN model added some
improvement in the performance above the XG model.
Though machine learning models can analyze complex,
non-linear patterns in datasets, the weaker performance of
the XG model may be indicative of the need for larger
samples sizes for model training. In addition, the accuracy

measurement depends on the threshold chosen, whereas
the AUC-ROC is invariant to thresholds. Therefore,
depending on the clinical question, different models can
be chosen to provide the best performing model. For
example, future models could test the potential appropri-
ateness of thiazides versus potassium citrate based on
demographic and clinical history factors. Finally, we also
found that the demographic and clinical predictors priori-
tized by the XG model for training reflect known associa-
tions with stone disease, such as BMI. Together, these
findings support the potential of EHR derived tools for
predicting 24H urine abnormalities in kidney stone
patients.

EHR-derived tools that associate predictors with 24H
urine abnormalities could facilitate earlier, selective die-
tary and medical interventions for stone disease. Though
recent work has suggested that selective medical therapy
may have similar impact on clinical stone recurrence as
empiric medical therapy, selective medical therapy with
metabolic urine testing can benefit patients with risk fac-
tors for stone recurrence.15,16 Metabolic urine testing for
stone prevention with 24H urine analysis can be limited
both by patient collection and manual clinical interpreta-
tion.16 Additionally, the cost of the test and its utility in
individualized stone prevention have led to underutiliza-
tion of metabolic urine testing despite recommendations

Figure 1. Workflow for prediction using each model. Each model underwent training using EHR-derived data. (Color version
available online.)
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by the American Urologic Association.3,13,17,18 Our
results suggest the feasibility of a machine learning based
prediction tools to identify interventions to target the uri-
nary parameters most likely to be abnormal.
Prior studies have investigated the prediction of 24H

urine abnormalities from EHR-derived data. Otto et al
associated demographic and clinical information with
24H urine stone risk results.5 Specifically, in calcium

oxalate stone formers the group found that age, gender,
and BMI all impact calcium, oxalate, citrate, and pH
using logistic regression models. Our boosted machine
learning model similarly prioritized these variables for
24H urine abnormality prediction. However, our inclu-
sion of all stone compositions (ie not only calcium oxa-
late) likely explains differences in prediction of specific
24H urine analytes seen in our study. Moreover, it is likely
that more robust data sets for training of the machine
learning models will improve prediction.

The predictors prioritized by our models support the cur-
rent understanding of stone pathophysiology. Age, gender,
and BMI all have known physiologic impacts on urine
analytes. For example, insulin resistance in the proximal
tubule found in obese patients can lead to decreased
ammonia excretion and the lithogenic acidification of
urine.19 We similarly found BMI to be the top prioritized
predictor of 24H urine pH prediction. Likewise, known
age related changes to GFR may associate with type 4 renal
tubular acidosis, favoring more acidic urine.18 Finally, the
mediation of calcium excretion by estrogen has been asso-
ciated with differences in stone compositions between
men and women.20,21 Future efforts to optimize machine
learning models as clinic decision making tools could pri-
oritize these clinical and demographic EHR-derived varia-
bles for improved prediction. Additionally, further studies
assessing the utility of machine learning models to guide
empiric medical management compared to selective medi-
cal therapy based on 24H urine results are pending.

There are limitations to our study. First, the study’s ret-
rospective data collection may not account for variables
missing from the EHR, and there may be important pre-
dictors that were not included in the models. Addition-
ally, it is possible that some patients had modified dietary,
pharmacologic, and lifestyle factors that would have
impacted their urine metabolites at the time of the 24H
study. Notably, the inclusion of patients on thiazides and
alkali citrate, which are known to improve urine chemis-
tries, may confound our results. However, these patients
were few (16%), and these medications for reasons other
than stone disease (eg 90% of patients taking thiazides

Table 2. Top XGBoost predictors of 24H urine abnormalities

24H Urine Parameter

pH UA24 Na24 Cit24 Ca24 Ox24 Vol24

Top XG Boost Predictors* BMI 0.42 0.31 0.29 0.15 0.04 0.004 0.005
Age 0.29 0.16 0.05 0.13 0.03 0.003 0.004
Male gender 0.02 0.06 0.21 0.01 0.001 0.001 0.001
Ca Oxalate stone 0.16 0.01 0.008 0.11 0.003 0.0004 0.001
Female gender 0.05 0.11 0.08 0.04 0.003 0.007 0.001
Hypertension 0.04 0.02 0.03 0.08 0 0 0.0004
GERD 0.07 0.04 0.02 0.009 0.001 0.0002 0.001
Diabetes mellitus 0.06 0.01 0.01 0.01 0.001 0.001 0.0002
Hydroxyapatite stone 0.07 0.01 0 0.002 0.001 0 0.0003
Thiazide medication 0.02 0.004 0 0 0 0 0.001

*Predictors are sorted from most to least significant by SHAP score, representing the relative contribution of each predictor used for clas-
sification via the change in log-odds. A score of 0 suggests the predictor has no influence on abnormal urinary parameter prediction. A
non-zero score suggests association with predicting an abnormal urinary parameter.

Table 1. Patient characteristics serving as inputs for
model training

Demographics N = 1314 (%)

Age (years § SD) 51§15
Gender, male 697 (53)
Gender, female 617 (47)
BMI (mean § SD) 30§8
Race
White 1192 (91)
African American 56 (4)
Asian 20 (2)
Other 40 (3)
Past Medical History
Bowel Disease, N(%) 119 (9)
Hyperlipidemia, N(%) 368 (28)
Hypertension, N(%) 707 (54)
Gout, N(%) 57 (4)
Diabetes, N(%) 292 (22)
Chronic Kidney Disease, N(%) 105(8)
Cystinuria, N(%) 3 (0.2)
Coronary Artery Disease, N(%) 130 (10)
Cerebrovascular Accident, N(%) 36 (3)
Gastroesophageal Reflux Disease, N(%) 469 (36)
Osteoporosis, immobility or
hyperparathyroidism, N(%)

72 (5)

Meds
Alkalinizing agent, N(%) 112 (9)
Thiazide, N(%) 89 (7)
Allopurinol, N(%) 52 (4)
Predominant Stone Composition*
Calcium Oxalate, N(%) 880 (67)
Hydroxyapatite, N(%) 241 (18)
Carbonate Apatite, N(%) 20(2)
Uric Acid, N(%) 100 (8)
Other, N(%) 60 (5)

*Stone composition only available for 1301 patients in cohort.

55UROLOGY 169, 2022



were on the medications for hypertension). Furthermore,
medication status was not highly prioritized by the model
as prediction variables for any urinary parameter. We
chose to evaluate a single test that was temporally closest
to a stone event to minimize these effects, but this could
also limit model training. Moreover, there are likely other
clinical characteristics that could be included in the mod-
els that was inconsistently reported in the EHR and we
were unable to use (ie age of first stone, number of stone
episodes etc.) Furthermore, the reference values for urine
parameters are somewhat arbitrary and are limited in
directing therapy for stone prevention as even patients
with normal urinary parameters may still form stones. Due
to this, a binary stratification of “abnormal vs normal” was
used, which may limit granularity and prediction of the
models. The findings of this study may differ from data
derived from other populations. Despite these limitations,
this study demonstrates the feasibility of EHR-derived pre-
diction tools to detect metabolic abnormalities. Further
optimization of the models, as well as external validation,
can help with clinical decision making for earlier, targeted
stone prevention therapy.

CONCLUSION
We have developed machine learning models for the pre-
diction of 24H urine abnormalities using EHR-derived
data. Predictors prioritized by our models support the cur-
rent understanding of kidney stone pathophysiology. Fur-
ther studies aimed at model optimization and validation
could lead to the creation of clinical tools to facilitate
decision -making for medical stone management.
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