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Abstract

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D)
genome organization shapes development, evolution, and disease. However, no gold standard exists for
comparing contact maps, and even simple methods often disagree. In this study, we propose novel
comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and
22,500 in silico predicted contact maps. We also quantify the robustness of methods to common sources
of biological and technical variation, such as boundary size and noise. We find that simple
difference-based methods such as mean squared error are suitable for initial screening, but biologically
informed methods are necessary to identify why maps diverge and propose specific functional
hypotheses. We provide a reference guide, codebase, and benchmark for rapidly comparing chromatin
contact maps at scale to enable biological insights into the 3D organization of the genome.
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Introduction

The same genomic locus can adopt different three-dimensional (3D) conformations in different cells,
species, and disease states, which can impact gene regulation, cell identity, and replication timing (Fig.
1A)1,2,3–7. Chromosome-conformation capture methods (3C, 4C, 5C, Hi-C, Micro-C)8–12 measure how the
genome folds across scales, including chromosomal territories, topologically associating domains (TADs),
enhancer-promoter loops, and architectural stripes 10,13–15. In recent years, single-cell and deep learning
techniques accelerated the study of chromatin conformation across an expanding range of biological
contexts 16–22.

There are many ways to compare chromatin conformation maps, but no gold standard exists.
Existing approaches rank differences between pairs of maps6,7,23–26, test reproducibility between replicates
and modalities 7,23,24,27, identify tissue specific contacts26, and highlight differential chromatin
interactions6,25. Some scores are designed to identify global differences like boundaries and contact
intensities (Fig. 1B, left and center), while others target focal changes like enhancer stripes (Fig. 1B,
right). To rank thousands of loci with diverse folding patterns, one must consider how scoring metrics
prioritize different map features and respond to technical artifacts.

Here, we develop a unifying framework to guide strategies for comparing contact maps for new
use cases. We introduce three novel methods—eigenvector difference, contact decay probability
difference, and triangle track comparison—and benchmark these along with representative methods from
the literature to evaluate 11 total approaches (Fig. 1C). We quantify how methods differentially rank pairs
of contact maps across experimental Hi-C data, 22,500 in silico sequence insertions and deletions, and
simulated contact maps that capture both biological and technical variation. Our analyses identify when
methods diverge and when they are consistent, which methods are redundant or complementary, and
where methods commonly fail. The new methods we introduce have relatively high concordance with
existing metrics while providing rich information about biological mechanisms. We summarize our
recommendations and release a library of open-source code for scoring differences between contact
frequency maps to enable scientists to choose and apply the right method for their research question.
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Figure 1. Approaches for comparing 3D chromatin contact maps. (A) 3D genome comparisons drive insights
into many domains of chromatin biology. Differences observed between maps may reflect consequences of
mutations, cell type differences, species differences, or technical biases. (B) 3D contact maps exhibit a range of
functionally meaningful differences, e.g., in global folding patterns, contact intensity, or small, focal changes to part
of the map. (C) We define three categories of comparison methods and evaluate 11 representative methods. Basic
methods (left) compare the contact intensities at each contact bin across two maps with simple measures such as
mean squared error or correlations. Map-informed methods (middle) transform the 2D contact maps into 1D tracks
that describe qualities like the directionality index or insulation score. These tracks were compared to obtain a
score. Feature-informed methods (right) are designed to identify relevant elements (e.g., from functional genomics
data) or structures (e.g., TADs or loops).

Results

Diverse strategies for scoring pairs of contact maps
When scoring differences between pairs of contact maps, it is common to apply basic methods that
consider entire 2D contact matrices (e.g., mean squared error 206,720) or feature-informed methods that sum
differences in specific structures (e.g., loops28). These methods represent two extremes. Basic methods
are global summary statistics that can overlook small differences that are most biologically interesting. In
contrast, feature-informed algorithms specifically target elements such as TADs, stripes, and loops, but
are agnostic to overall contact change and may emphasize artifactual differences. As a compromise
between these extremes, we extend statistics previously developed to quantify compartments
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(eigenvectors/PCA29), boundaries (directionality index30, insulation31), and contact decay9 in individual
maps to instead score differences between pairs of maps. We also propose a new method, called triangle
score, which calculates average contact frequencies across all submatrices in a larger contact matrix.
These new map-informed methods (Supplemental Text) transform 2D contact matrices into 1D tracks
that capture features relevant to genome folding, and then score them using Spearman’s correlation or
mean squared error (MSE). The intermediate 1D track allows for the interpretation of which regions
contribute most.

To comprehensively characterize the behavior of the basic, map-informed, and feature-informed
scoring approaches, we implemented 11 representative methods in open-source code (Fig. 1C,
Supplementary Table 1, Supplemental Text): MSE, Spearman's rank correlation coefficient (ρ),
structural similarity (SSIM), stratum-adjusted correlation coefficient (SCC), eigenvector difference,
directionality difference, insulation difference, contact probability decay difference, triangle score, the
HiCCUPS loop caller28, and the cooltools TAD caller31,32. We evaluated how these methods perform
across diverse settings. We first applied the methods to Micro-C from human foreskin fibroblasts (HFF)
and embryonic stem cells (ESC) to develop biological intuition about the type of map differences each
method captures. We then evaluated their performance using a mass screen of in silico genetic
perturbations. Finally, simulations isolated the effects of specific kinds of technical and biological
variation. This three-part benchmark focuses on how methods rank map pairs, rather than the statistical
significance of specific differences; stricter or looser significance thresholds can be applied to any score.
In sum, we explored and quantified the behavior of scoring methods to learn when they are discordant
with each other.

Beware! Map comparison methods produce discordant rankings
Spearman’s correlation, Pearson’s correlation, and mean squared error are most commonly used to score
two maps28,33,34, as they are computationally efficient and require no feature selection. We compared their
behavior using Micro-C contact maps from HFF and ESC cells across all 7,840 1-Mb windows of the
human genome (Methods). These basic methods prioritized markedly different regions (Fig. 2, r2 =
0.0002, Supplemental Fig. 1)11, often for reasons unrelated to underlying biology. For example, a pair of
maps with visible structural rearrangements but a low range of contact frequencies was prioritized by
correlation, but not by MSE, as the absolute difference between them is small (Fig. 2A). Conversely, two
maps with similar overall structure but different contact frequency ranges produce a large MSE even
though they are very strongly correlated with each other (Fig. 2D). These inconsistencies occur because
Spearman’s correlation is agnostic to intensity changes, while MSE is sensitive to intensity. Basic
methods were not designed to identify specific chromatin features, and therefore may not always be
biologically interpretable on their own. They often disagree.
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Figure 2. Basic methods to compare contact frequency maps rank map pairs differently. Mean squared error
(MSE) and Spearman’s correlation (ρ) were calculated across the genome on experimental contact maps from
embryonic stem cell (ESC) and human foreskin fibroblast (HFF) (n = 7840). Each point represents a comparison
score between a pair of contact maps. We highlight examples where (A) only correlation ranks highly, (B) both
methods agree the maps are similar, (C) both methods agree the maps are different, and (D) only MSE ranks
highly.

Map-informed methods highlight changes in genome structure
The map-informed methods we created or extended have never been benchmarked. To gain intuition
about their behavior, we used our comparison across experimental Micro-C maps in HFF and ESCs to
evaluate how these methods behave on contact maps containing three common changes linked to
disruption in gene regulation: a boundary change, a stripe change, and a loop change (Fig. 3A i, red
boxes). Triangle score, directionality index, insulation difference, and eigenvector difference all correctly
identified large contact changes across the three examples (Fig. 3A ii-v). Eigenvector difference in
particular showed a strong separation between tracks at the emergence of a new boundary and the
strengthening of an existing boundary (Fig. 3A iii). Compared to other approaches, directionality index
performed best in identifying focal changes, like the loss of loops (Fig. 3A iv), while eigenvector
difference and insulation difference instead prioritized global changes in contact. Finally, eigenvector
difference and contact decay were sensitive to overall contrast difference. We observed a divergence in
the contact decay tracks across the first pair where a map gains distal contact (Fig. 3 vi). In sum, the
design of these methods highlight different features in the tracks, from overall structural differences and
average contact, to sharp changes in contrast.
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Figure 3: Map-informed and feature-informed methods capture differences in TAD boundaries, stripes,
and loops. A. i. Examples of regions where contact frequency maps differ between HFF and ESCs across three
structural changes: a lost TAD boundary (left panel), a lost stripe (middle panel), and lost loops (right panel), as
marked by red boxes. ii-vi. Tracks corresponding to each map-informed disruption score method are shown
below for ESCs (blue) and HFF (gray). Tracks for methods in (ii. - v.) correspond to the coordinates of the contact
maps, while contact decay in (v.) is plotted across genomic distance. B. i. Two loci in HFF and ESC with a
boundary and loop change (GRCh38 chr3:137129984-138178560 and GRCh38
chr3:138702848-139751424, respectively). ii. Applying a TAD boundary caller identifies a boundary change
between cell types iii. Comparing chromatin loops identifies a genomic region with differential looping.
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Feature-informed methods prioritize changes to interacting chromatin regions
To evaluate comparison approaches based on TAD and loop calling methods, we chose two regions with
differential structure between ESC and HFF maps (Fig. 3B i) and tuned the parameters of the cooltools
TAD caller 31,32 and the HiCCUPS loop caller 28 (Supplemental Fig. 2) 35,36. As expected, the TAD caller
correctly identified all three TAD boundaries visible in ESCs, including one that is lacking in HFF (Fig.
3B ii). Similarly, the loop caller identified a loop that is unique to ESCs (Fig. 3B iii). While these
feature-informed approaches are biologically interpretable, they tend to be slower, address only one
element at a time, and require additional parameter selection (Table 1, Supplemental Table 1). These
methods also require a significance cutoff for initial feature calls, which may result in missed features of
low signal. Additionally, most maps contain fewer than ten called features in a 1-Mb window, creating a
small range of possible scores. Therefore, caution should be exercised when using these scores at a large
scale, especially in maps without strong TADs or loops, where they can produce artificial results.

In silico perturbation enables evaluation of contact map comparison methods at
scale
Although differences between cell-types exist, 3D genome organization is often highly conserved7,30,37. To
evaluate the performance of map comparison methods across a wider variety of possible changes in
chromatin structure, we used an in silico approach to generate pairs of 1-Mb maps across the genome with
a variety of perturbations. We applied Akita 20, a convolutional neural network that predicts genome
folding from sequence alone, to generate contact frequency maps from sequences with and without a
genetic perturbation likely to disrupt genome folding (Fig. 4A). We designed three types of perturbations:
CTCF canonical motif insertions 38, endogenous CTCF motif deletions, and random 100 base pair
deletions (Methods). In total, we produced 22,500 unique contact frequency map pairs on which to test
all three types of methods. To enable large-scale evaluation, we applied the 11 methods and transformed
their scores such that higher values indicate greater disruption of 3D organization and smaller values
indicate more similar organization (Methods, Supplemental Fig. 3).

We quantified the similarities and differences between methods by comparing the scores for all
22,500 in silico perturbations across all possible pairs of methods. We found that TAD- and loop-based
scores are most different from the rest, as they only detect a specific type of change (Fig. 4B).
Correlation-based measures (i.e., Spearman's correlation, SSIM, and correlation of contact decay) cluster
together distinct from MSE-based methods (i.e., MSE, triangle (MSE), insulation (MSE)). This result
aligns with our initial observation that Spearman’s correlation and MSE often do not agree, especially
across their top-scoring variants (Fig. 2, Supplemental Fig. 4, Supplemental Fig. 5). Principal
component analysis (PCA) on the disruption scores shows similar clustering (Fig. 4C).

We next simultaneously clustered the perturbed map pairs and scores across methods to identify
groups of perturbations that differentiate them (Fig. 4D). While all correlation-based methods exhibit
similar behavior, insulation (corr), SSIM, and DI (corr) produce scores which are more uniformly
distributed and less extreme across perturbations, highlighting the necessity of appropriate normalization
when comparing across methods (Fig. 4E i and vi). We also find that perturbations created by CTCF
insertion group together, as they are often the most disruptive of 3D organization. However, we observed
substantial sub-structure within the cluster, reflecting differences in the behavior of scores on these maps.
For example, cluster i is highly scored by all methods, and a representative perturbation example shows a
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Figure 4. Comparison of disruption score methods. (A) Schematic describing the strategy for comparing in
silico perturbed contact maps. Random ~1 Mb windows of the human genome (GRCh38) are selected and input
into Akita to predict chromatin contacts (left). The same window is also perturbed with a CTCF motif insertion,
deletion, or random 100 base pair deletion. The resulting sequence is also input into Akita to predict chromatin
contacts of this perturbed reference sequence (right). The perturbed and unperturbed maps were compared by
applying the 11 basic, map-informed, and feature-informed methods. (B) Correlation matrix of the methods tested,
where cells are shaded according to how well their scores correlated across perturbations. Concordance of the
top-scoring perturbations (Supp. Fig. 6) also shows agreement between corr and SSIM, while highlighting that
loops and triangle (corr) are quite concordant with other methods when considering only the top scores. Colors
across the top of the heatmap identify the individual methods. (C) Principal component analysis of disruption
scores of each method from perturbed map pairs. (D) Heatmap of normalized disruption scores across all methods
and perturbations. The colored key along the top of the heatmap indicates whether the perturbation was a random
deletion (pink), a CTCF insertion (navy), or a CTCF deletion (light blue). Method colors are the same as in (C).
Four broad trends in disruption score patterns across methods are marked with brackets. (E) Representative
example map pairs chosen from the groups identified in D: i. high scores across 5 methods; ii. low across all
methods except for eigenvector (corr); iii. low scores across all methods; iv. low scores across methods but higher
for MSE-based scores; v. high scores only for MSE-based scores; vi. high scores for correlation-based scores:
triangle (corr), corr, and SCC.

variety of changes: gained loops, lost stripes, and boundary changes. The magnitude of changes in this set
likely contributes to the universally high scores. Clusters iv and v are primarily composed of CTCF
insertions, where scores are similar across most methods, but higher only for MSE-based methods. Profile
v is the most dissimilar. Here, the representative map pair has minimal structural differences but extreme
contrast, suggesting that this cluster is defined by examples of high dynamic range that are
over-prioritized by MSE-based methods (Fig. 4E v).

We further compared methods by quantifying how well the top-ranked maps agree across
methods. Some methods have high overlap (Supplemental Fig. 5, Supplemental Fig. 6). For example,
85% of map pairs are ranked in the top 5th percentile for both SCC and Spearman’s correlation, indicating
some general agreement in the methods. However, many methods have minimal overlap, suggesting they
prioritize different features. For example, only 32% of the top 5th percentile of maps ranked by insulation
(MSE) and SSIM are shared. Finally, we applied methods to map pairs selected to represent a range of
effect sizes and confirmed all methods are sensitive to large changes and insensitive to small changes
(Supplemental Fig. 7).

Simulation studies quantify method sensitivity
Our in silico screen produced a diversity of structural alterations, often affecting multiple aspects of the
map. For instance, a CTCF site insertion can both create a new TAD boundary and alter overall contact
intensity. To disentangle how each method responds to changes in particular map features, we generated
simulated maps and synthetically altered a single variable at a time. We then measured the sensitivity of
each score to each specific change. As a template, we created a contact frequency map with two CTCF
motifs forming a TAD and used this canvas to simulate both biologically meaningful changes (e.g.,
change in TAD size, substructure, or intensity) and technical artifacts (e.g., change in noise or resolution)
(Methods). For each change, we gradually increased the strength of the perturbation across 100 maps and
subsequently applied scoring methods (Supplemental Fig. 8).

Each method responded differently across the simulated changes (Fig. 5). Steeper curves
represent high sensitivity to the perturbation, while flatter curves represent less sensitivity. We find that
basic methods are most sensitive to technical variations, such as increased noise and decreased resolution,
while map-informed methods are most robust (Fig. 5A-B). As expected, correlation-based methods are
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unaffected by changes in contrast and intensity, while MSE-based methods are highly sensitive (Fig.
5C-D). All methods except eigenvector difference identify TAD size and sub-structure changes. However,
some prioritize certain types of organizational changes over others (Fig. 5E-F). For example, insulation
difference and triangle profile are sensitive to boundary changes, while directionality index highlights
new boundaries but is less effective in identifying changes to existing boundaries. We synthesized these
results along with findings from in silico perturbations in the Guidelines to provide recommendations
based on the intended application.

Figure 5. Simulated contact frequency maps with controlled perturbations estimate disruption score
method sensitivities. Normalized disruption scores are plotted for a simulated contact frequency map containing
a TAD across 6 types of perturbations, plotted on the x-axis. Each perturbation was added at 100 different
degrees. The images shown correspond to the final degree–the maximum perturbation added. Line plots show
disruption scores from comparing the original map (top left corner) to each perturbed map. Maps corresponding to
the incremental increases in perturbation are shown alongside the changed scores in Supp. Fig. 8. (A) Noise is
added by introducing random values drawn from a Gaussian distribution to the maps; (B) Resolution is lowered by
increasing bin size; (C) Contrast is applied by increasing the range of the signal; (D) Intensity is increased globally
by adding a constant to all values; (E) Size is increased by slightly enlarging the domain width; (E) A sub-structure
is added by gradually incorporating a new boundary at the center of the existing TAD.

Guidelines
Our study assessed the effectiveness of 11 existing and new methods for comparing 3D genome contact
maps (Supplementary Table 1). Although there were similarities between the top-scoring variants of
most methods, our results indicate that they differ substantially in their sensitivity to biological and
technical variation (Supplemental Fig. 6). We summarize these findings and guidelines in Table 1.
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Table 1: Strengths, weaknesses, and suggested applications of disruption score methods.
Trends and patterns across disruption scores summarized from statistical comparisons (Fig. 4), simulations (Fig. 5),
and manual parsing of the most highly disruptive perturbations for each method (Supp. Fig. 5). While this summary
is not exhaustive of all possible outcomes, it provides qualitative guidelines for users to make informed decisions
when selecting a comparison method based on the scale and application of their research. We use green checks to
indicate advantages and red X's to indicate disadvantages for each method category: basic methods (blue),
map-informed methods (orange), and feature-informed methods (green). Double signs represent strong patterns,
while no sign indicates no pattern, and NA denotes that the method was not tested.

All of the methods can identify structural changes, such as changes to domain size or the addition
of substructure, but to varying degrees. Of the basic methods, MSE and SCC more readily identify subtle
organizational changes. Among the map-informed methods, insulation difference and triangle difference
are the most effective at identifying changes in both existing and new domain boundaries. Directionality
index highlights new boundaries or substructures but less readily identifies changes in existing
boundaries. Eigenvector difference and contact probability decay are the least sensitive to small-scale
organizational changes, but prioritize larger-scale changes in the overall structure of the map. These
statistics have been deployed primarily for identifying differences at the scale of compartments and whole
chromosomes, so it is not surprising that they are not sensitive to map differences within 1-Mb windows.

In general, the new map-informed methods we proposed are concordant with basic methods and
each other, especially when comparing the top 5% of scores genome-wide (30%-80% of examples are
shared; Supplemental Fig. 6). Triangle difference stands out among our newly implemented methods as
highly concordant with other methods and able to detect a variety of map differences, but it is also the
slowest (Supplementary Table 1). Insulation difference is faster and also fairly concordant with other
methods. Most top 5% map pairs called by other methods are also high-scoring with loop calling, but not
TAD calling. Loop calling also identifies many additional map pairs that are not in the top 5% of other
methods.

Correlation-based methods are insensitive to changes in contrast and intensity, while MSE-based
methods are highly sensitive to these changes. In contrast, map-informed methods summarize maps across
a feature track and are therefore more robust to these changes. One notable exception is insulation
difference, which is more sensitive to resolution changes that obscure domain boundaries. Some map
changes, such as contrast or intensity, may either be biologically meaningful or a consequence of
technical variability, depending on the scenario. The basic methods, especially MSE, SCC, and SSIM, are
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particularly sensitive to technical variation such as increased noise and decreased resolution. SSIM falls in
between. We also note that MSE is by far the fastest approach (Supplementary Table 1). All others
require less than 10 seconds per thousand calls, aside from eigenvector difference and triangle track,
which can be accelerated by decreasing the resolution of the maps prior to comparison.

We recommend using multiple methods in tandem. We find that there is no “one size fits all”
metric that best identifies every feature of interest in a chromatin contact map. Researchers should
consider the intended application and the types of changes that are meaningful when selecting the most
effective and relevant metrics. We recommend first applying basic methods as an initial screen to identify
the most disrupted maps, especially when evaluating large datasets. Using both correlation- and
MSE-based scores will help mitigate biases of each. We next suggest applying a map-informed method,
such as triangle or insulation difference, to a subset of disruptive perturbations to gain insight into the
types of changes present. Finally, feature-informed methods can be used to explore TAD and loop
gains/losses and to develop mechanistic hypotheses.

Code
Our codebase is publicly available to enable researchers to easily test and apply all 11 approaches to their
own research questions. The code is written in Python and is accompanied by documentation and tutorials
to help users get started. The methods have flexible hyperparameters and can be run simultaneously on
one dataset, making it easier to compare the results of different approaches and select the most
appropriate methods. To aid in interpretation of the methods, we also provide guidance on how to
visualize map-informed and feature-informed approaches across contact matrices. Overall, our codebase
provides a valuable resource for researchers who wish to apply multiple methods to their own datasets
and rank pairs of maps based on their differences.

Discussion

In this study, we evaluated and compared the behavior of 11 methods for quantifying differences between
pairs of 3D contact maps, including many methods that have not been previously used for this application.
We introduced insulation difference, eigenvector difference, and contact decay difference, as well as the
new triangle comparison method, which is robust to noise while capturing structural differences between
maps. We found that the choice of scoring function can have a significant impact on the conclusions
drawn from the data, and therefore suggest that multiple comparison metrics should be used when seeking
biological insights into the function of the 3D genome.

Several limitations should be considered when evaluating our results. While we consider a range
of experimental, predicted, and simulated maps, our findings may not apply to other experimental
conditions, such as single-cell contact matrices or other scenarios in which maps have a high level of
noise and/or sparsity. Additionally, some of the methods we evaluated have variables that can be tuned to
optimize performance in a given context (Supplementary Text, Supplementary Table 1). We only
tested one TAD caller and one loop caller to examine their general utility 35,36. Finally, we did not directly
address the problem of identifying a threshold beyond which the differences should be considered
biologically or statistically significant. One could apply previously proposed 6,25,39 and novel thresholding
methods to the ranks computed with scoring methods to define a significant set of map pairs.
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Our work provides useful guidelines for scoring contact maps that will enable further discovery
into the mechanisms of the 3D genome. We provide a codebase of methods for flexible and fast scoring
across contact maps under a unified framework. The experiments we performed as a part of this study,
such as the in silico deletion and insertion of thousands of CTCF motifs genome-wide, provide a useful
dataset for evaluating diverse biological questions or utility as controls for the level of 3D genome
variation expected based on CTCF and random perturbations. We anticipate that incorporating methods
with stronger biological interpretability, like those evaluated here, may further improve machine learning
methods for predicting contact maps. Overall, by developing novel and more robust scoring functions, our
study provides a foundation for analyzing contact maps at scale.

Code and Data Availability
All original code and resulting data from in silico screens have been deposited at
–https://github.com/pollardlab/contact_map_scoring.
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Methods

Datasets

Experimental maps

Maps of 3D chromatin contact are represented as 2D matrices of pairwise interaction frequencies.
Regions of maps with high values indicate genomic loci with a high frequency of interaction in physical
space, on average. Following experimental Hi-C, maps begin as raw read counts, which are subsequently
balanced and normalized to reflect log(observed/expected) contact frequencies 40.

Experimental data considered in this study from HFF and ESCs were preprocessed as training
datasets for the Akita model11,20. Specifically, these high-quality Micro-C datasets were normalized with
genome-wide iterative correction (ICE), adaptively coarse-grained, normalized for distance-dependent
decrease in contact frequency, log clipped to (-2,2), linearly interpolated to fill missing bins, and
convolved with a 2D Gaussian filter for smoothing. Processing maps ensures consistency across the
experimental data and computational predictions since we do not evaluate raw experimental read counts.
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Predicted maps
To effectively compare contact maps at scale, we generated a dataset of thousands of maps predicted from
in silico CTCF motive insertions, CTCF motif deletions, random 100 bp sequence insertions, and random
100 bp sequence deletions. These alterations were passed into Akita20, a model predicting genome folding
from sequence, to generate pairs of maps with structural rearrangements. We first curated sequences for
insertion. CTCF motif sequences were randomly selected from annotated CTCF sites in the reference
genome from the hg38 build of the JASPAR database38. Random 100 bp fragments were also selected
from chromosome 1 for insertion. Both the CTCF and random sequences were inserted into the center of
1-Mb of DNA with start locations randomly selected from chromosome 1. Akita requires a fixed input of
220 bp. Additional sequence was trimmed from the 3’ end, such that the final sequence remained 1-Mb. To
curate deletions, we again selected random CTCF sites from JASPAR, pulled the surrounding 1-Mb of
DNA, removed the motif sequence, and pulled in additional sequence from the 3’ end such that the entire
sequence remained 1-Mb in length. The same strategy was applied to randomly selected 100 bp fragments
for deletion. All generated 1-Mb genomic query sequences were filtered to exclude overlap with
ENCODE blacklisted regions41. For each perturbation, both the original genomic sequence and the
perturbed sequence were provided to Akita, resulting in two predicted 448x448 contact maps where the
resolution of each pixel is 2048 bp representing a total length of ~1 Mb (220) of DNA sequence 20. This
dataset consists of 7,500 matched contact maps for each category of perturbation for 30,000 total map
pairs. Random 100 bp insertions were generally excluded from analysis, as they had almost no effect.

Simulated maps
To generate simulated maps, we initially generated predicted maps with Akita from random DNA
sequence. Predicted maps still showed minimal structure from randomly occurring CTCF-like motifs.
Sequence matches to the forward and reverse canonical CTCF motif38 were therefore shuffled to produce
a predicted blank canvas map devoid of all higher-order folding patterns. Structure was reintroduced to
simulated maps by inserting forward and reverse CTCF motifs ¼ and ¾ through the random DNA
sequence, producing TAD-like boundaries. We tuned simulated parameters as described below.

● Noise: Gaussian noise was added to the maps with a standard deviation ranging from 0 (no added
noise) to 0.2.

● Resolution: The original 448x448 map was downsampled ranging from a resolution of 2,048 bp
(original resolution) to 50,972 bp.

● Contrast: Pixel intensities of the contact map were multiplied by a scalar ranging from 1 (no
increase in contrast) to 2.

● Intensity: A scalar value ranging from 0 (no addition) to 0.2 was added to all pixels in the contact
map.

● Size: The size of the substructure within the map was increased by resizing the original map by a
scalar and trimming the matrix back down to the original dimensions. Map sizes were increased
by a factor of 1 (no resize) to 1.1.

● Substructure: An additional map was created by introducing CTCF halfway into the random
sequence to produce an additional boundary. The original map was combined with the
substructure map with a multiplier ranging from 0 (no added structure) to 1 (total added
structure).

Visualizations of these changes can be found in Supplemental Fig. 8.
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Benchmarking methods

Adapting new methods
Triangle profile is a novel scoring method. Directionality index30, PCA29, insulation31, and contact decay9

are established methods for analysis on individual Hi-C maps, but have not previously been used to to
score pairs of maps. For map-motivated and feature-motivated methods, it is possible to plot the scoring
method results along the length of the map, or on the map itself, as seen in Figure 3. The common
behavior across maps with a small change, a large change, and no change is illustrated in Supplemental
Fig. 7.

Comparing contact maps
We applied all comparison metrics to pairs of experimental, predicted, and synthetic maps. For details
regarding how each metric is computed, see Supplemental Text. Any missing values were masked prior
to evaluation and not considered by the comparison metrics. Scoring method implementations can be
found within scoring.py in the codebase. MSE, Spearman's rank correlation coefficient, and Pearson
correlation coefficient were applied to map-informed methods to collapse two 2D tracks into a scalar
value. Pearson correlation behaved almost identically to Spearman’s rank correlation, and therefore was
excluded from analysis (Supplemental Fig. 1). For computationally intensive methods, we reduced the
resolution of the input from 2kb to 10kb to speed evaluation time across thousands of comparisons.

To ensure that scores across approaches are comparable, we flip some methods such that higher
values indicate greater disruption and smaller values indicate more similar maps. For methods like
correlations, we use 1 - correlation such that a perfect correlation (1) is flipped to mean no difference (0).
For all the results, we provide raw scores and normalized scores so that it is easier to interpret how a raw
score for one method compares to a raw score of another method. We additionally scale all values by the
mean score of all random 100 bp deletions using Akita, which we find to have minimal impact
(Supplemental Fig. 3). For example, a raw MSE of 0.0065 and a raw 1 - pearson correlation of 0.036
both correspond to the same normalized score of 2. That is, a disruption of that magnitude corresponds to
2 times the average disruption of a 100 bp deletion.

For loop and TAD callers, we quantify the ratio of changed (e.g. added or lost) features (TADs or
loops) to extend these approaches and generate a single score for each pair of maps.

Method parameters
The following methods required no adjustable input parameters: mean squared error, Spearman's rank
correlation coefficient, and pearson correlation coefficient, SSIM, SCC, contact decay, eigenvector, and
triangle correlation. We describe tunable parameters choices for the remaining methods below. We did not
optimize tunable parameter choices but instead selected default choices from existing approaches. Results
from alternative parameter selection are demonstrated in Supplemental Fig. 2 and Supplemental Fig. 9.

Insulation:
window_size=10: size of the diamond-shaped window considered

Directionality index:
window_resolution=10000: resolution of sliding window in bp
replace_ends: replaces ends of DI track with 0s
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buffer=50: how far from the track ends to replace with 0
Loop difference:

p=2: the width of the interaction region surrounding the peak
width=5: the size to get the donut filter
ther=1.1: the threshold for the ratio of center windows to the donut filter and lower left filter
ther_H=1.1: the threshold for the ratio of center windows to the horizontal filter
ther_V=1.1: the threshold for the ratio of center windows to the vertical filter
radius=5: the upper bound of distance of two loop points considered as same

TAD difference:
window_size=5: size of the diamond-shaped window
ther=0.2: the threshold for TAD boundaries
radius=5: the upper bound of distance of two TADs considered as same
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