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distinct patterns of function and

evolution.
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SUMMARY
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element
DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these
mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes.
We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements be-
tween human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin
coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of
cis changes, we discover an unexpected number (�10,000) of trans changes and show that cis and trans el-
ements exhibit distinct patterns of sequence divergence and function. We further identify differentially ex-
pressed transcription factors that underlie�37%of trans differences and trace how cis changes can produce
cascades of trans changes. Overall, we find thatmost divergent elements (67%) experienced changes in both
cis and trans, revealing a substantial role for trans divergence—alone and together with cis changes—in reg-
ulatory differences between species.
INTRODUCTION

Phenotypic divergence between closely related species is driven

primarily by non-coding mutations that alter gene expression

rather than protein structure or function.1–7 Gene-expression

changes can result from divergence in cis, where DNAmutations

alter local regulatory element activity, or trans, where changes

alter the abundance or activity of transcriptional regulators in

the cellular environment.8,9 These two modes of change have

different mechanisms and scopes of effects on gene-expression

outputs and phenotype. Each cis change influences a single reg-

ulatory element and its immediate local genome targets, while a

trans change globally influences many regulatory elements and

their gene targets. Thus, determining the respective contribu-

tions of cis and trans changes to between-species gene expres-

sion differences is key to understanding the mechanisms that

generate phenotypic divergence. Furthermore, because gene

regulatory variants in humans are often associated with disease

phenotypes,10–13 understanding these mechanisms will inform
Cell Genomics 4, 100536,
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functional connections between genetic variation and dis-

ease risk.

cis and trans changes are difficult to study independently

because cellular environment and genomic sequence are inher-

ently linked within endogenous settings. At the level of gene

expression, previous studies have developed a variety of ap-

proaches to disentangle cis and trans mechanisms of gene reg-

ulatory evolution, including strategies that measure allele-spe-

cific gene expression within a controlled setting, such as a

hybrid trans environment.8,14–32 While their results have yielded

a complex picture of these mechanisms across different set-

tings, they generally argue that cis changes drive most diver-

gence in gene expression between closely related species. How-

ever, gene expression is driven by transcription factor (TF) and

regulatory element activity; thus, it is necessary to investigate

cis and trans changes at the regulatory element activity level.

cis-mediated divergence (i.e., DNA sequence change) of regula-

tory element activity is well documented, albeit indirectly, from

studies that have compared epigenomic patterns across
April 10, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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species,33–36 as well as work examining the contribution of

human-accelerated and transposable element sequences to

divergent regulatory elements.37–40 By contrast, few examples

of trans-divergence in regulatory element activity have been

characterized.

Massively parallel reporter assays (MPRAs) have been used to

compare the regulatory activity of homologous sequences be-

tween closely related species within a uniform cellular environ-

ment.41–44 By controlling the cellular environment, differences

in activity are interpreted to result from changes in cis (i.e.,

sequence). Similarly, a handful of studies have directly tested

the contributions of trans changes (i.e., cellular environment

changes) to regulatory element function by comparing the activ-

ity of sequences across species-specific cellular environ-

ments.45–47 Recent work comparing human and mouse embry-

onic stem cells reported �70% of activity differences were

attributed to changes in cis,46 but a limited, pre-selected subset

(�1,600) of regulatory elements was tested. Related to this, a

previous study comparing TF footprints between human and

mouse orthologous sequences reported strong conservation of

TF regulatory circuitry despite substantial cis changes to the reg-

ulatory landscape.48 Collectively, these studies conclude that

trans changes to regulatory element function occur less

frequently than cis changes and suggest that cis-variation

primarily drives divergent regulatory element activity between

closely related species.49 However, a comprehensive and

unbiased survey of cis and trans contributions to global gene

regulatory divergence remains a key gap in understanding

mechanisms of gene regulatory evolution.

In this study, we develop a comparative assay for transpo-

sase-accessible chromatin coupled to self-transcribing active

regulatory region sequencing (ATAC-STARR-seq) framework to

comprehensively dissect cis and trans contributions to regulato-

ry element divergence between species. ATAC-STARR-seq is an

MPRA that quantifies sequence regulatory activity from open

chromatin DNA.50 To perform ATAC-STARR-seq, a reporter

plasmid library is generated using transposase-assisted cloning

of chromatin accessible DNA fragments for each cell type and

species. The species-specific reporter library is subsequently

assayed for activity either in its native cellular environment or in

the cross-species environment. Because the library generation

is separate from the reporter assay, our approach decouples

DNA sequence from cellular environment. This allows measure-

ment of activity differences between homologous sequences

while controlling the cellular environment and vice versa.

Our approach expands the scope of analysis from a few thou-

sand regulatory elements to�100,000 genome-wide without the

need for prior knowledge of regulatory potential.50,51 Applying

comparative ATAC-STARR-seq to human and rhesus macaque

lymphoblastoid cell lines (LCLs), we discover that cis and trans

changes contribute to divergent activity at similar frequencies.

We show that cis-divergent elements are enriched for acceler-

ated substitution rates and variants that influence gene expres-

sion in human populations, while trans-divergent elements are

enriched for footprints of differentially expressed TFs that affect

multiple gene regulatory loci. Furthermore, we find that the activ-

ity of most species-specific regulatory elements diverged in both

cis and trans between human and macaque LCLs. These cis-
2 Cell Genomics 4, 100536, April 10, 2024
and-trans regions are enriched for specific transposable element

sub-families harboring distinct TF-binding footprints in humans.

Finally, we illustrate how knowledge of these mechanisms en-

hances the interpretation of human variation and gene regulatory

networks. By leveraging new technology to evaluate mecha-

nisms of regulatory element divergence genome-wide, our study

highlights the interplay between cis and trans changes on gene

regulation and reveals a central role for trans-regulatory diver-

gence in driving gene regulatory evolution.

RESULTS

Comparative ATAC-STARR-seq produces a multi-
layered view of human and macaque gene regulatory
divergence
We applied ATAC-STARR-seq50 to assay the regulatory land-

scape of LCLs between humans and macaques52–54 (GM12878

vs. LCL8664; Figures 1A and 1B). ATAC-STARR-seq enables

genome-wide measurement of chromatin accessibility, TF occu-

pancy, and regulatory element activity, which is the ability of a

DNA sequence to drive transcription (Figures 1 and S1). For

each experimental condition, we performed three replicates

and obtained both reporter RNA and transfected plasmid DNA

for each replicate (Figure S1A). In all conditions, reporter RNA

and plasmid DNA libraries were highly complex with estimated

sizes ranging between 9–42million and 31–54million sequences,

respectively (Figure S1B). Both reporter RNA and plasmid DNA

sequencing data were reproducible across the three replicates

(Figure S1C; Pearson r2, 0.97–0.99).

We determined accessibility peaks using the sequence reads

obtained from the input DNA libraries, as previously described.50

Previous studies have investigated regions of differential chro-

matin accessibility in primate LCLs and other tissues,55–58 and,

consistent with these results, most chromatin accessibility

peaks identified between the human and macaque genomes

are species specific (59,144, 67%), while 29,531 (33%) peaks

were shared between species (Figure 1C). As expected, we

find that divergent accessibility peaks are distally located and

enriched for cell-type-relevant TF-binding sites and gene path-

ways (Figures 1D and S1D–S1H).

Pinpointing the mechanisms underlying divergent activity re-

quires that regulatory element DNA be captured from and tested

in both species. Therefore, we analyzed shared accessible chro-

matin peaks where both the human and macaque homolog ac-

tivities were measured. We quantified regulatory activity in four

conditions: human DNA in human cells (HH), human DNA in ma-

caque cells (HM), macaque DNA in human cells (MH), and ma-

caque DNA inmacaque cells (MM) (Figure 1B). By comparing ac-

tivity levels of orthologous sequences in these four settings, we

can dissect whether cis changes, trans changes, or both have

occurred in every single element tested. Altogether, this pro-

duces an integrated, high-resolution quantification of accessi-

bility, TF occupancy, and regulatory element activity at acces-

sible regions shared between human and macaque LCLs

(Figure 1E).

To both identify regions of interest and estimate their activity,

we divided the 29,531 shared accessible peaks into overlapping

bins and retained bins with 1:1 orthology between human and
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Figure 1. Comparative ATAC-STARR-seq produces a multi-layered view of human and macaque gene regulatory divergence

(A) Accessible DNA fragments are isolated from cells and subsequently cloned into self-transcribing reporter vector plasmids, which are then electroporated into

cells and assayed for regulatory activity by harvesting and sequencing reporter RNAs and input plasmid DNA.

(B) ATAC-STARR-seq plasmid libraries were independently generated for human GM12878 and macaque LCL8664 cell lines and then assayed separately in

either cellular context. Our comparative approach providesmeasures of chromatin accessibility and transcription factor (TF) footprinting for both genomes aswell

as regulatory activity for the four experimental conditions: human DNA in human cells (HH), human DNA in macaque cells (HM), macaque DNA in human cells

(MH), and macaque DNA in macaque cells (MM).

(C) Euler plot representing the number of species-specific and shared accessibility peaks identified from ATAC-STARR-seq data.

(D) Distribution of genomic annotations for species-specific and shared accessibility peaks based on the distance to nearest TSS.

(E) Select genomic loci at hg38 coordinates representing conserved or differentially active regions of the two genomes. Tracks represent human and rhesus

macaque accessibility; TF footprints for SPI1 and NFKB1; and regulatory activity measures for HH, HM, MH, and MM. See also Figure S1.
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macaque. We used replicates to call significant activity for each

bin in each condition and collapsed overlapping bins with

consistent activity, yielding a set of robust active regions for

each condition (Figures S2A–S2J and S2K; STAR Methods).

Next, we directly compared active regions between the four con-

ditions. We used a rank-based comparison scheme to account

for power differences that would affect significance thresholds,

assuming that each condition has similar numbers of active re-

gions within shared accessible chromatin. We compared results

at several rank thresholds corresponding to different false dis-

covery rates (FDR) and observed similar patterns in the divergent

activity calls between conditions at all thresholds considered

(Figures S2L and S2M). Active regions were similarly distributed
across the genome for each condition, with marginal differences

in genomic feature content (Figure 2A). This supports that our

strategy stably identifies divergent activity, regardless of the

chosen threshold. Thus, for our analyses, we used a rank

threshold of 10,000 active regions per condition corresponding

to an FDR of less than �0.1.

To assess the sensitivity of our assay, we reasoned that se-

quences with both HH and MM activity should be active in the

cross-species contexts; thus, within this set, the proportion of

human sequences with activity in macaque cells (HM) and ma-

caque sequences with activity in human cells (MH) could provide

a conservative estimate of sensitivity. We found that 72.8% of

the human sequences are active in macaque cells (HM), and
Cell Genomics 4, 100536, April 10, 2024 3
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Figure 2. cis and trans gene regulatory divergences occur at similar frequencies

(A) Distribution of genomic annotations for the �10,000 active regions called in each condition based on the distance to nearest TSS.

(B) Comparison between the human and macaque native states (HH vs. MM) to reveal conserved and species-specific active regions.

(C) The percentage of active regions with conserved and divergent activity.

(D) Cartoon depicting the four conditions tested and how they are compared to identify cis- and trans-divergent regions.

(E) Human-specific cis-divergent regions determined by comparing human-specific active regions with the MH condition. Regions without MH activity were

called cis-divergent regions.

(F) Macaque-specific cis-divergent regions determined by comparing macaque-specific active regions with the HM condition.

(G) Human-specific trans-divergent regions determined by comparing human-specific active regions with the HM condition.

(H) Macaque-specific trans-divergent regions determined by comparing macaque-specific active regions with the MH condition. The heatmaps display ATAC-

STARR-seq activity values for the specified region sets and experimental conditions. See also Figures S2 and S3.
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58.1% of the macaque sequences are active in human cells

(MH). The fraction active in the cross-species contexts increased

to 78.7% and 75.2%, respectively, when analyzing the top

50,000 active regions (rather than the top 10,000). Overall, our

assay demonstrates relatively high sensitivity, supporting that
4 Cell Genomics 4, 100536, April 10, 2024
most differences in activity are explained by biological rather

than technical factors.

We evaluated the overlap between human-active regions

identified by ATAC-STARR-seq with orthogonal methods for

defining regulatory elements, including FANTOMBcell eRNAs,59
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ENCODE cCREs,60 and chromHMMgene regulatory predictions

in human and primate LCLs56,61 (Table S1). We found that 98%

of HH active elements overlap regions defined by at least one

of the orthogonal methods considered. Furthermore, each

orthogonal region set was significantly enriched in the HH active

regions compared to inactive accessible regions (FDR p value =

5.4e5–2.2e308), confirming that our human-active elements cap-

ture the gene regulatory element landscape of LCLs as well as

previous methods. Given their association with strong enhancer

activity, we also estimated the enrichment of super enhancers

from SEdb62 in HH active elements. We found that, while HH

active regions are not enriched for super enhancer annotations

compared to inactive regions, they are enriched for typical B

cell enhancers for SEdb (Table S2). Thus, our assay identifies

active human lymphocyte elements and has strong concordance

with orthogonal enhancer definitions.

cis and trans gene regulatory differences occur at
similar frequencies
Comparing the regulatory activity between ‘‘native states’’ (HH

vs.MM) revealed that 3,034 (18%) regions have conserved activ-

ity, 6,922 (41%) regions were active only in the HH state, and

6,941 (41%) were active only in the MM state (Figures 2B and

2C). The overlap between HH and MM active regions was signif-

icantly greater than expected (Figure S2N; p < 2.2e�16), and the

divergent activity calls are supported by clear differences in

ATAC-STARR-seq regulatory activity signal between HH and

MM (Figure 2B).

Our analysis identifies activity differences from regions with

shared (but potentially different levels of) accessibility; therefore,

we determined the relationship between activity and accessi-

bility for active regions called in the HH and MM conditions. As

in previous studies,43,63 we observed a correlation between

chromatin accessibility and MPRA activity, but this relationship

is only present at low accessibility levels (Figure S2O) and differ-

ences in activity between species do not strongly correlate with

differences in accessibility (Figure S2P). Moreover, activity differ-

ences between conditions are maintained at both higher and

lower thresholds on activity (Figures S2L and S2M); thus, acces-

sibility is not the main driver of activity differences between the

conditions.

To determine the contribution of cis (i.e., sequence) and trans

(i.e., cellular environment) changes to the differentially active reg-

ulatory regions, we compared their native activity to the corre-

sponding non-native contexts; i.e., human DNA in the macaque

cellular environment (HM) and macaque DNA in the human

cellular environment (MH) (Figure 2D). We define cis changes

as sequence orthologs that have different activity when tested

in the same cellular environment. Conversely, we define trans

changes as individual sequences with different activity when

tested in different cellular environments.

cis changes contributed to a large proportion of human-spe-

cific active regions (83%; 5,745). For these regulatory elements,

the human DNA sequence was active in the human cellular envi-

ronment, but themacaque homologwas substantially less active

in both the macaque and human cells (Figure 2E). Likewise, 73%

of macaque-specific active regions (5,034) had activity differ-

ences due to changes in cis (Figure 2F). Similar proportions of hu-
man-specific active regions (79%; 5,443) were differentially

active due to changes in trans; i.e., their DNA sequences were

not active when assayed in the macaque cellular environment

(Figure 2G). Likewise, 74% of macaque-specific active regions

(5,165) were differentially active due to trans changes (Figure 2H).

To validate the high number of trans-only regions, we per-

formed dual-luciferase reporter assays for seven human-specific

trans-only loci as well as two conserved-active regions (Figures

S3A–S3C; STAR Methods). The majority of the selected trans-

only regions (four of seven; p < 0.02) showed significantly greater

activity in the human cells compared tomacaque cells across or-

thologs. Another two regions showed a consistent trend toward

greater activity in human cells, but these differences were not

statistically significant. The human and macaque conserved-

active orthologs had conserved activity across contexts. We

also note that these experiments demonstrate that, for many of

the trans-only regions, activity levels are greater than that of

the empty vector for the macaque context; however, there is a

significant difference in activity compared to the human cells.

In summary, six of the seven trans-only regions validate (four

strong with strong evidence and two suggestive) in luciferase

assays.

These data demonstrate that trans changes to regulatory

element activity occur as often as cis changes, indicating that

trans changes in cellular environments have a widespread

impact on gene regulatory activity divergence. These results

are supported by noticeable differences in ATAC-STARR-seq

regulatory activity signal between conditions (Figures 2E–2H),

and that equivalent proportions of cis and trans differences are

maintained regardless of the threshold used for calling activity

(Figures S2L and S2M).

Most activity differences are driven by changes in both
cis and trans

Because cis changes and trans changes each contribute to the

differential activity of many regulatory regions, we quantified

how often they occur together in the same DNA regulatory

element. We found that 70% of the human-specific active re-

gions (4,631) and 64% of the macaque-specific active regions

(3,994) displayed both cis and trans differences in activity

(Figures 3A–3D). We classified these regulatory regions as cis-

and-trans, and those differentially active only in cis or in trans

were reclassified as cis-only and trans-only. With these defini-

tions, the cis-and-trans class accounts for 67.5% of all diff-

erentially active regions across species, whereas cis-only and

trans-only represent about 17% and 15.5%, respectively.

Thus, the regions with regulatory activity differences between

humans and macaques predominantly exhibit functional

changes in both sequence and cellular environment, suggesting

that cis and transmechanisms jointly contributed to the evolution

of individual gene regulatory elements.

Differentially active region classes exhibit specific
genomic characteristics
To investigate the functional genomic characteristics of these

differentially active region classes (cis-only, trans-only, cis-

and-trans, and conserved-active), we used publicly available

data for the human LCLs, focusing on the human-specific active
Cell Genomics 4, 100536, April 10, 2024 5
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regions unless otherwise specified. While all three divergent

classes consisted of more non-coding transcription start site

(TSS)-distal regions than the conserved-active class, trans-only

regions overlapped a higher proportion of non-coding TSS-distal

annotations than either cis-only or cis-and-trans regions (Fig-

ure 3E), consistent with previously reported trans changes be-

tween human and mouse.46 Gene Ontology annotations of

nearby genes revealed that all three cis/trans region classes

were enriched for cell-type-specific pathways such as immune

effector process and regulation of immune response. However,

we also observed unique terms for each class, such as type I

interferon signaling for the trans-only regions and chromatin

silencing for the cis-only regions (Figure S3D). Conserved-active

regions were enriched for housekeeping pathways, such as RNA

processing and translation. Together, this indicates that genes

involved in different functional pathways may be prone to

different kinds of regulatory divergence between species.

Human-specific cis-only, trans-only, and cis-and-trans re-

gions also displayed different patterns of histone modifications,

including histone H3 lysine 27 acetylation (H3K27ac), histone H3

lysine 4monomethylation (H3K4me1), and histoneH3 lysine 4 tri-

methylation (H3K4me3) (Figures 3F and S3E). trans-only regions

showed greater enhancer-associated histone marks (higher

H3K4me1 signal and lower H3K4me3 signal) than the other clas-

ses. This is consistent with the observation that the trans-only

class is more enriched for non-coding TSS-distal annotations

than the cis-only or cis-and-trans classes (Figure 3E).

We observed a prominent bimodal distribution of histone

signal for trans-only regions compared to others. Nucleosome-

free region (NFR) centers have bimodal distributions of histone

signal because they are located squarely between two nucleo-

somes, whereas NFR peripheries have single peaks because

they are much closer to one of the two nucleosomes.64 We

used GM12878 H3K27ac chromatin immunoprecipitation

sequencing (ChIP-seq) signal to map the �1 and +1 nucleo-

somes (Figure S3F) and phyloP signal to identify the most

conserved portion of the NFR (Figure S3G). trans-only regions

locate more often to the summit of the chromatin accessibility

peak, while cis-only and cis-and-trans regions locate closer to

the periphery (Figure 3G). This means that trans-only changes

are more likely to occur at NFR centers, where there is stronger

evolutionary constraint.

TF motif enrichment analysis revealed distinct TF motifs that

distinguish regulatory regions both by the mechanism of gene

regulatory divergence and species specificity (Figure 3H). For

example, human-specific trans-only regions are enriched for

Interferon Regulatory Factor (IRF) family motifs, while ma-
Figure 3. Most species-specific regulatory differences are driven by c

(A and B) Comparison of ATAC-STARR-seq activity values across all conditions fo

cis-only, trans-only, and cis-and-trans regions display activity signals consistent

(C and D) Euler plots of the cis-only, trans-only, and cis-and-trans classifications

(E) Distribution of genomic annotations for human-specific cis-only, trans-only, c

(F) Profile plots of ENCODE GM12878 ChIP-seq signal for H3K27ac, H3K4me1,

(G) Density plot of the distances between region center and accessible chromatin

and conserved-active regions. The +1 and �1 histones are estimated with purp

conserved portion of the ChrAcc peaks is estimated with a gray box by the 17-w

(H) Clustered heatmap of TF motif enrichments for the combined or species sep

distributions of p values, normalized across rows. Only the top 15 motifs for eac
caque-specific trans-only regions are enriched for ATF4 motifs,

among others. Furthermore, IRF motifs are not enriched in hu-

man-specific cis-and-trans regions, suggesting the TFs that

drive trans divergence for trans-only regions are different from

those that drive the cis-and-trans regions.

Key pathways are differentially expressed between
human and macaque LCLs
We performed RNA sequencing (RNA-seq) on both human

(GM12878) and macaque (LCL8664) cell lines to identify mecha-

nisms underlying trans-divergent regions. The human and ma-

caque LCL expression profiles cluster together and away from

other tissues in both species (Figure S4A). Among hematopoietic

lineages, both LCLs cluster closely with expression profiles from

bulk, naive, and memory B cells (Figure S4B), suggesting they

are transcriptionally similar to one another and to primary B

cells.65 Thus, the human and macaque LCLs closely reflect pri-

mary B cells, and their transcriptional differences likely reflect

regulatory divergence between human and macaque.

We identified 2,975 differentially expressed genes with 1,505

upregulated in human and 1,470 upregulated in macaque (Fig-

ure 4A; human-specific log2(fold change) > 2; macaque-specific

log2(fold change) <�2; both adjusted p [padj] <0.001). The hu-

man-specific genes were enriched for immune pathways, such

as interferon signaling and interleukin-10 signaling, while ma-

caque-specific genes were enriched for extracellular matrix

pathways, such as collagen formation (Figure 4B). Although

these cell lines have broadly similar expression profiles (Spear-

man’s r = 0.85; Figure S4C), these findings indicate that specific

expression differences could drive the trans-regulatory environ-

ment effects identified. Moreover, these gene expression

differences are not due to cell line immortalization (Figure S4B)

or plasmid-induced interferon-stimulated gene expression

(Figures S4D–S4F) artifacts.

trans-only regions are bound by differentially expressed
TFs
The differential enrichment of IRF familymotifs in human-specific

trans-only regions (Figure 3H), as well as the enrichment of inter-

feron signaling pathways in human-specific differentially ex-

pressed genes (Figure 4B), suggests a potential link between

differentially expressed TFs and the observed trans-divergent re-

gions. We used TF footprints from ATAC-STARR-seq (Fig-

ure S1D) to test for TF footprint enrichment in the human-specific

trans-only and macaque-specific trans-only regions. Indeed, we

identified many TFs that are both significantly differentially ex-

pressed and enriched for binding in species-specific trans-only
hanges in both cis and trans

r (A) human-specific and (B)macaque-specific cis- and trans-divergent regions.

with their calls.

for (C) human-specific and (D) macaque-specific active regions.

is-and-trans, and conserved-active regions.

and H3K4me3 histone modifications for the human-specific region classes.

(ChrAcc) peak summits for human-specific cis-only, trans-only, cis-and-trans,

le dashed lines by the ENCODE GM12878 H3K27ac signal summits and the

ay PhyloP score; see Figures S3F and S3G.

arated cis-only, trans-only, and cis-and-trans regions. Values are the Z-score

h region set were chosen for plotting. See also Figure S3.
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regions; we define these TFs as ‘‘putative trans regulators’’

(Figures 4C and S4G). These putative trans regulators include

several members of the IRF family (IRF4/7/8) that are markedly

upregulated in human compared to macaque cells and are en-

riched for footprints in human-specific trans-only regions (Fig-

ures 4C and 4D). Moreover, 18.7% of human-specific trans-

only regions were found to contain a TF footprint for one of these

IRF family members (Figure 4D).66

The trans-regulatory variance could be due to non-species-

specific factors, such as cell line immortalization-specific ef-

fects.67 Using publicly available RNA-seq data from genotypically

different human and macaque LCLs,68 we confirmed that all but

two TFs—IRF8 and ETV5—were differentially expressed (Fig-

ure 4E) across multiple individuals. These data support the differ-

ential activity ofmost putative trans regulators as species specific.

In total, these putative trans regulators bind 37.1% of human-

specific trans-only regions and 11.5% of macaque-specific

trans-only regions (Figures 4D and S4H). The remaining trans-

only regions may be explained by TFs that did not meet our

putative trans regulator criteria, which included stringent sig-

nificance thresholds and a 1:1 ortholog requirement in the

comparative RNA-seq workflow. It is also likely that other mech-

anisms contribute to differences in the trans-regulatory environ-

ment, such as previously described species-specific differences

in post-transcriptional and post-translational regulation of

TFs.69,70 Notwithstanding, these data argue that the differential

expression of only a handful of TFs drives a substantial amount

of the trans-regulatory differences observed.

trans-only sequences are more conserved than cis-only
sequences
Because trans changes involve the cellular environment, while

cis changes involve sequence differences, we hypothesized

that DNA sequences in trans-only regions would be more

conserved than those in cis-only regions. While trans-only and

cis-only regions are both enriched for primate phastCons

conserved elements compared to expected (trans-only odds ra-

tio [OR] = 1.5, padj = 1.4e�11; cis-only OR = 1.2, padj = 9.1e�4;

Figure 5A), trans-only regions overlap a significantly higher frac-

tion of phastCons elements than cis-only regions (empirical

p = 2.5e�3; Figure S5A). In contrast, cis-and-trans regions are

significantly depleted of conserved elements (Figure 5A; OR =

0.67, padj = 1.1e�30). Excluding transposable elements substan-

tially reduced cis-and-trans phastCons element depletion (Fig-

ure S5B left; OR = 0.88, padj = 0.34), indicating that the lack of

cis-and-trans conservation is partly explained by transposable

elements within them. As expected, regulatory sequences with

conserved activity had the strongest enrichment for conserved

elements (Figure S5B right; OR = 3.1, padj = 8.1e�157).
(B) Enrichments of differentially expressed gene sets for Reactome pathways. O

(C) Enrichment of human-specific trans-only regions for TF footprints stratified by t

expressed and enriched TFs. See Figure S4G for macaque trans-only results.

(D) Percentage of human-specific trans-only regions that overlap a given footpri

number of overlaps. See Figure S4H for macaque trans-only results.

(E) Volcano plot (and zoomed-in version) of differential expression analysis of TF

(blue) or macaque (orange) putative trans regulators identified in the preceding an

from Cain et al. 2011.68 See also Figure S4.
Accelerated substitution rates compared to neutral expecta-

tions can indicate shifts in sequence constraint, possibly result-

ing from positive selection or relaxation of constraint.38,71,72

Both cis-only and trans-only elements are significantly enriched

for elements with higher-than-expected substitution rates

(Figures 5B and S5C left; cis-only OR = 1.4, padj = 4.9e�3;

trans-only OR = 1.3, padj = 4.7e�2), but human-active cis-

only regions are more enriched than trans-only regions for

accelerated substitution rates (Figure S5C right; empirical

p = 0.02). cis-and-trans elements showed no significant differ-

ence in substitution rates compared to expectation (p = 0.3).

Overall sequence identity was similar across cis/trans groups,

ruling out the possibility that systematic differences in the sub-

stitution rates of these regions underlie activity differences

(Figure S5D).

In terms of evolutionary origins,73,74 all region sets are en-

riched for ancient sequences, from the placental common

ancestor and older; thus, it is unlikely that differences in conser-

vation are due to differences in sequence age (Figures S5E and

S5F). Each region set is enriched for sequences with multiple

ancestral origins, and cis-and-trans regions are the most signif-

icantly enriched (Figure 5C; conserved-active padj = 3.6e�27;

cis-only padj = 7.9e�43; trans-only padj = 1.3e�56; cis-and-trans

padj = 4.6e�233), suggesting that these sequences have under-

gone genomic rearrangements.

Altogether, cis-only and trans-only regions both exhibit ex-

tremes of sequence conservation, divergence, and origin; how-

ever, the sequences with cis-only changes have evidence of

higher substitution rates, while trans-only sequences are more

enriched for conservation, consistent with their respective

modes of divergence. The finding that elements with cis-and-

trans changes show substantially less evidence for selection

suggests that they may arise from alternative mechanisms and

have different functional roles.

cis-and-trans regions are enriched for SINE/Alu
transposable elements
Transposable element-derived sequence (TEDS) insertions are a

source of raw sequence that often develops novel, species-spe-

cific regulatory functions.39,40,75–77 Overall, each class is

depleted of TEDS compared with genome-wide expectation

(Figure S5G, left), consistent with previous findings that all

gene regulatory sequences are depleted of TEDS.73,78 However,

within the regulatory element classes, cis-and-trans regions

were enriched for TEDS compared to the other categories (Fig-

ure 5D; cis-and-trans OR = 1.14, padj = 9.7e�4; trans-only

OR = 0.86, padj = 0.02; cis-only OR = 0.91, padj = 0.08), and

this overlap is significantly larger than expected (Figure S5G,

right; empirical p = 1e�4). Conserved-active regions had no
nly the top five terms in each were plotted.

he differential expression of the TF. Text is only shown for themost differentially

nt. TFs within the same motif archetype were merged before determining the

s between four human and four macaque LCLs. Point color represents human

alysis. All other TFs are colored gray. Additional RNA-seq data were obtained
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(G) Jaspar motifs of the relevant TFs.
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significant TEDS enrichment (Figure S5H). This suggests that se-

quences with cis-and-trans divergencemore frequently originate

from TEDS than do other regulatory elements. Several TEDS

families were uniquely enriched in cis-and-trans regions, most

notably SINE/Alu and Mammalian-wide Interspersed Repeat
10 Cell Genomics 4, 100536, April 10, 2024
(MIR)-derived sequences (Figure 5E). Additionally, SINE/Alu ele-

ments were more enriched in human-specific cis-and-trans re-

gions compared tomacaque-specific cis-and-trans regions (Fig-

ures S5I and S5J), suggesting that SINE/Alu-derived sequence

activity is more prevalent in the human cellular environment.
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SINE/Alu elements might have provided proto-enhancers in

the last common ancestor of humans and rhesus ma-

caques,79–81 developing over time into species-specific regula-

tory elements that experienced both cis-and-trans changes to

obtain activity. The consensus AluSx sequence is enriched in

cis-and-trans elements and contains several sequences with

high similarity to known TF-binding sites. TF footprinting analysis

of cis-and-trans SINE/Alu elements (Figures 5F and 5G) provides

strong evidence for the presence of functional TF binding,

including the zinc-finger TFs, ZNF135, ZNF460, ZNF384, and

PITX2, FOXD2, OTX2, RARG, and MEF2A TFs. This demon-

strates cis-and-trans regions are enriched for sequences derived

from SINE/Alu elements and identifies several TFs that likely

contributed to species-specific regulatory divergence.

cis-only sequences are enriched for human variants
associated with gene expression
We quantified enrichment for expression quantitative trait loci

(eQTL) in regions with divergent activity, hypothesizing that hu-

man genetic variation in cis-only and cis-and-trans regions

would be more likely to associate with variable gene expression.

cis-only elements were significantly enriched for cis-eQTLs in

Epstein-Barr virus (EBV)-transformed B cells, while the other

classes were not (Figure 6A; 1.63 fold change, empirical

p = 1e�4). Focusing on human-specific active elements, the dif-

ference between cis-only and trans-only regions is even more

extreme (Figure 6A inset), indicating that regulatory elements

with sequence-based divergence between human and ma-

caques are more likely to harbor variants that modulate gene

expression among humans, while trans-only regions are less

likely to tolerate functional variants.

We evaluated human genome-wide association study (GWAS)

variants in divergent region classes, selecting immune and inflam-

matory traits from the UK Biobank (UKBB), where heritability had

previously been observed in B cell gene regulatory loci.65 After

removing human leukocyte antigen (HLA)-overlapping peaks, we

observed modest enrichment in all region classes for GWAS vari-

antsacross17 inflammatoryandautoimmune traitswith fewdiffer-

encesbetween theclasses (Figures6Band6C;empirical p<0.05).

Human-specific trans-only regions are significantly and spe-

cifically enriched for viral hepatitis C GWAS variants, while ma-

caque-specific regions are not (Figure 6C). This is notable

because humans and chimpanzees, but not macaques or other

Old-World monkeys, are susceptible.82 This suggests that trans-

regulatory changes contributed to the ape-specific susceptibility

to hepatitis C and that human genetic variants in the regions

bound by these trans factors modulate susceptibility to infection.

cis changes perturb enhancer regulatory activity near
the trans-regulatory ETS1 gene
cis changes can lead to trans changes byactingongenes, suchas

differentially expressed TFs, that alter the cellular environment.8,9

To illustrate this, we identified a human-specific cis-only region at

a putative enhancer for ETS1, a trans regulator that is more highly

expressed in human LCLs and binds to >13% of human-specific

trans-only regions (Figures 4C–4E, 7A, and S6A).

The activity of this putative enhancer is supported by

GM12878 H3K27ac signal and human B cell DNA hypomethyla-
tion.60,83 ETS1 is the closet gene to the DNA regulatory element

and is contained within the same topologically associated

domain (TAD) according to GM12878 Hi-C data (Figure 7B),84

suggesting that ETS1 is the likely target gene. The functional

relevance of this element is supported by two nearby SNPs,

rs4262739 and rs4245080, which have been associated with im-

mune-relevant human traits including lymphocyte percentage

(Figures 7A and S6B).73,74 We identified multiple sequence

changes between human and macaque and highlight several

candidate TFs, including IRF family members, where binding ac-

tivity is potentially modified by substitutions within their motifs

(Figure 7A). To corroborate the differential activity of this region,

we performed ChIP-qPCR and observed higher H3K27ac levels

in human compared to macaque cells (Figures 7C and S6C). We

also observed that the human allele is significantly more active

than themacaque allele in both cellular environments (Figure 7D;

GM12878 p = 0.015; LCL8664 p = 0.002).

While many TFs likely contribute to the activity of this region,

one candidate is IRF4. Two substitutions in this cis region disrupt

the IRF-binding motif in macaques (Figure 7A). Supporting the

functional relevance of these changes, we observe higher levels

of IRF4 binding at this locus in human compared to macaque

LCLs (Figures S6D and S6E). However, IRF4 is also a putative

trans regulator with differential expression between human and

macaque and differential footprints in many human-specific

trans regions (Figures 4C–4E). While the human allele is active

in both species’ LCLs, it is less active in macaque cells. Thus,

even in a cis-only region, changes in the trans environment

may contribute to activity levels, underscoring the complex inter-

play of cis and trans divergence that must be mapped when

inferring regulatory networks and their evolution. Altogether,

the cis changes (potentially in concert with trans changes) in

ETS1 enhancer activity illustrate how differential regulation of

an individual enhancer can ultimately generate substantial

trans-divergent regulatory activity between species (Figure 7E).

DISCUSSION

trans-regulatory divergence is more extensive than
previously recognized
Here, we used a comparative ATAC-STARR-seq framework to

directly identify differentially active DNA regulatory elements be-

tween human and rhesus macaque and to characterize their

mechanisms of divergence: changes in cis (i.e., sequence), in

trans (i.e., cellular environment), or in both cis and trans. We

discovered more trans-regulatory divergence than previously re-

ported.8,9,45–47,49 Key differences in our study design, experi-

mental system, and scale may explain the greater number of

trans changes observed. First, our work focuses directly on tran-

scriptional activity of the regulatory element itself, rather than

gene expression as the functional output. Second, because we

directly test for both cis and trans changes, we are able to

observe a large number of elements with evidence of both types

of change that would otherwise be categorized as cis changes.

Third, our approach substantially expands the scope of analysis

to include the entire chromatin-accessible genome.

Two recent studies that directly evaluated cis and trans

changes on regulatory element activity focused on a limited,
Cell Genomics 4, 100536, April 10, 2024 11
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pre-selected sets of regions.46,47 Whalen et al. reported that

nearly all 159 tested human-accelerated regions (HARs)

diverged in cis. This is concordant with our findings that many

cis-divergent elements are more likely to have accelerated sub-

stitution rates than other elements. Furthermore, HARs are rare

elements with extreme evolutionary pressures that do not repre-

sent most regulatory loci. Mattioli et al. compared human and

mouse regulatory element homologs and discovered that twice

as many regions were divergent due to changes in cis (n = 660)

than changes in trans (n = 293). The difference in the cis:trans ra-

tio may be due to different sampling of the elements tested and

the longer evolutionary divergence between human and mouse

compared to human and macaque. cis changes have been pro-

posed to increase with evolutionary divergence,8,17,25 so more

cis changes would be expected at further evolutionary dis-

tances. More work is needed to determine the modes of gene

regulatory divergence over both longer and shorter evolutionary

distances as well as different cellular contexts.
12 Cell Genomics 4, 100536, April 10, 2024
Select trans regulators drive substantial trans-
regulatory divergence in our system
We defined putative trans regulators as a TF class that both

display expression differences between species and bind to

trans-only regions as determinedby TF footprinting. This revealed

that a small number of key immune regulators drive a substantial

fraction of the human trans-divergence observed. We further

showed that one of the putative trans regulators, ETS1, is likely

regulated by a human-specific cis-only region with validated

cis-divergence in activity and substitutions in macaques that per-

turb multiple TF motifs, including the IRF family. This is evidence

of how a single substitutionmight influence the differential activity

of a whole network of gene regulatory elements and species-spe-

cific immune-related traits, such as hepatitis C susceptibility in

humans but not rhesus macaques. Indeed, we observed that

only the human-specific trans-only regions were highly enriched

for viral hepatitis C-associated variants. Altogether, our data will

enable further characterization of putative trans regulators and
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identification of specific loci such as the ETS1 regulatory element

that may contribute to human-specific phenotypes.
Implications on use of model organisms to understand
human regulatory element function
Using model organisms to study the function of gene regulatory

elements has relied on the premise that gene regulatory circuitries

are conserved, despite mutations to regulatory sequences. This

idea is strongly supported by numerous studies over the last

two decades.85 However, we show that trans-only elements

have strong sequence conservation yet different activity across

orthologous cell models. Our results indicate that sequence con-

servation does not guarantee functional conservation in model

organisms; the relevant aspects of the trans environment must

be conserved as well. Likewise, our results also argue that

sequence differences in gene regulatory activity (such as those

between human andmouse)may account for some but not all as-

pects of between-species activity differences. Given the prepon-

derance of cis-and-trans elements observed in our work and

others,21 regulatory activity differences may be even larger than

estimated based on cis- or trans-regulatory differences alone.

Thus, we believe that this framework will help to interpret both

the sequence and the environmental effects dictating the activity

of gene regulatory elements in model organisms.
A model of how cis and trans changes jointly drive
divergent regulatory element activity
cis-and-trans-divergent regions acquired changes in cis and

changes in trans during their evolution from the most recent

common ancestor (MRCA) between humans and rhesus ma-

caques (Figure 7F). We speculate that trans perturbations likely

occur prior to cismutations. Once the relevant trans factor bind-

ing changes, some elements will accumulate enough sequence

variation to result in cis changes as well. Several lines of evi-

dence from previous reports and our study support this hyp-

othesis. For example, cis changes have been proposed to accu-

mulate with greater evolutionary divergence, whereas trans

changes are favored short term.8,17,25 This is likely because envi-

ronment-driven trans perturbations can affect many regulatory

regions’ activities at once but may be more deleterious than

cis changes when sustained over time.86 Thus, more significant

phenotypic changes may be driven by changes to the trans-reg-

ulatory environment, but with a cost that can be ameliorated by

local and precise cis changes to DNA regulatory elements.
Limitations of the study
In our study, only one genotype per species was directly assayed

to infer evolutionary divergence. This was due in part to limited
(D) Luciferase assay of human and macaque DNA sequences for the human-s

Normalized values are the ratio of background-corrected firefly luciferase to ba

between human and macaque sequences with a two-sided Wilcoxon-rank-sum

(E) Model of how cis changes can induce trans changes for other loci via TF exp

element, changing the affinity of TFs to the locus. This causes enhancer activity l

enhancer activity modifies the expression of target genes. If the target gene is a TF

for other regulatory regions.

(F) Model of how regions divergent in both cis-and-trans jointly drive differential

Figure S6.
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availability of non-human primate cell lines. Moreover, the

comprehensive design of our comparative ATAC-STARR-seq

approach limits scalability to test activity variation across multi-

ple genotypes and cellular environments. Improvements to

future assay designs should permit additional genotypes to be

evaluated for each species.87

Immortalization strategies also differ between human and rhe-

sus B cells. Specifically, the human B cell line used in this study

was immortalized using EBV,53,54 whereas the rhesus cell line

was immortalized in vivo by a rhesus lymphocryptovirus (rhLCV)

related to EBV.52,88,89 Although the viral EBNA2 gene, which

drives transcription of many gene targets in EBV-infected cells,90

is homologous between EBV and rhLCV, host-restriction and co-

evolutionary pressures may exaggerate some of our results. We

envision that this could be avoided in future studies by using pri-

mate induced pluripotent stem cell (iPSC) lines.91 Beyond these

confounders, our analysis of publicly available RNA-seq data-

sets shows that, at least transcriptionally, the two cell lines are

highly similar both to each other and to human primary B cells

(Figures S4A and S4B). Considering these points, the observa-

tions we report are cis and trans differences directly between

the two cell types GM12878 and LCL8664, and we cannot al-

ways discern between evolutionarily selected changes versus in-

dividual-specific changes with this dataset.

Despite the greater scale of the assay, ATAC-STARR-seq

lacks the within-sample repeated measurements of synthetic

MPRA approaches that take dozens of measurements for each

sequence assayed.92 For this reason, we cannot reliably

compare effect sizes of activity. Instead, we categorize activity

by applying significance thresholds to call active regions, which

we then compare between conditions. In addition, ATAC-

STARR-seq, unlike lentivirus-based MPRAs, is an episomal

assay and lacks the influence of higher-order chromatin struc-

tures that may provide key sources of regulatory variation be-

tween species. On the other hand, use of the episomal approach

avoids confounders such as chromatin context-dependent

(aberrant) silencing of lentiviral insertions, which would be diffi-

cult to control when comparing species’ cellular environments,

as the insertion is random. We anticipate that future work will

directly test genome context and other significant structural fea-

tures on gene regulatory divergence between species.
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Isotype Control #3900
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Critical commercial assays
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Takara Bio Cat #634874

Deposited data

HM, MH, and MM ATAC-STARR-seq data This paper GEO: GSE216917

HH ATAC-STARR-seq data Hansen and Hodges50 GEO: GSE181317

GM12878 & LCL8664 RNA-seq data This paper GEO: GSE216917

Experimental models: Cell lines

Human Lymphoblastoid Cell Line: GM12878 Coriell Cat #GM12878; RRID: CVCL_7526

Rhesus Macaque Lymphoblastoid

Cell Line: LCL8664

ATCC Cat # CRL-1805;
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Oligonucleotides

See Table S3. N/A

Recombinant DNA

hSTARR-seq_ORI plasmid Addgene #99296; RRID: Addgene_99296

pcDNA3.1-eGFP Addgene #13031; RRID: Addgene_13031

Software and algorithms
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This paper https://github.com/HodgesGenomicsLab/

ATAC-STARR_cis_trans

HodgesGenomicsLab/ATAC-

STARR_cis_trans: zenodo

archive - 02.29.2024

This paper https://doi.org/10.5281/zenodo.10728131

HodgesGenomicsLab/ATAC-

STARR-seq – Github Repository

Hansen and Hodges50 https://github.com/HodgesGenomicsLab/

ATAC-STARR-seq

Bowtie2 Langmead and Salzberg98 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools Li et al.99 http://samtools.sourceforge.net/

BEDTools Quinlan and Hall102 https://bedtools.readthedocs.io/en/latest/

Trim Galore! Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/

Picard Broad Institute https://broadinstitute.github.io/picard/

deepTools Ramirez et al.101 https://deeptools.readthedocs.io/en/develop/

ggplot2 Wickham100 https://ggplot2.tidyverse.org/

Genrich GitHub https://github.com/jsh58/Genrich

liftOver UCSC Genome browser https://genome.ucsc.edu/cgi-bin/hgLiftOver;

https://hgdownload.soe.ucsc.edu/goldenPath/

hg38/liftOver/hg38ToRheMac10.over.chain.gz;

https://hgdownload.soe.ucsc.edu/goldenPath/

rheMac10/liftOver/rheMac10ToHg38.over.chain.gz

HOMER Heinz et al.103 http://homer.ucsd.edu/homer

ChIPSeeker Yu et al.105 https://guangchuangyu.github.io/software/ChIPseeker/
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featureCounts Liao et al.107 https://subread.sourceforge.net/

DESeq2 Love et al.108 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

generate_ATAC-STARR_bigwig.py GitHub https://github.com/HodgesGenomicsLab/

ATAC-STARR_cis_trans

bigWigToBedGraph UCSC genome browser http://hgdownload.cse.ucsc.edu/admin/

exe/linux.x86_64/bigWigToBedGraph

bedGraphToBigWig UCSC genome browser http://hgdownload.cse.ucsc.edu/admin/

exe/linux.x86_64/bedGraphToBigWig

CrossMap Zhao et al.109 https://crossmap.sourceforge.net/

Pheatmap CRAN Project https://cran.r-project.org/web/packages/pheatmap

GREAT Mclean et al.110 http://great.stanford.edu/

TOBIAS Bentsen et al.111 https://github.com/loosolab/TOBIAS

Phast Tools Hubisz et al.71,72 http://compgen.cshl.edu/phast/

STAR Dobin et al.118 https://github.com/alexdobin/STAR
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Emily

Hodges (emily.hodges@vanderbilt.edu).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact without restriction.

Data and code availability
d ATAC-STARR-seq and RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) and are publicly available

as of the date of publication. Accession numbers are listed in the key resources table.

d All code has been deposited in a publicly available GitHub Repository and an unchanging archive of this repository was created

in Zenodo. Links to both repositories are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
One human lymphoblastoid cell line (GM12878) and one rhesus macaque lymphoblastoid cell line (LCL8664) were used in this

study.52–54 GM12878 is female, while LCL8664 is male. GM12878 and LCL8664 were purchased directly from Coriell and ATCC

(CRL-1805), respectively. We cultured both cell lines with RPMI 1640 Media containing 15% fetal bovine serum, 2mM GlutaMAX,

100 units/mL penicillin and 100 mg/mL streptomycin. Cells were cultured at 37�C, 80% relative humidity, and 5% CO2. Cell density

was maintained between 0.23106 and 1.53106 cells/mL with a 50% media change every 2–4 days. All cell lines were regularly

screened for mycoplasma contamination.

METHOD DETAILS

ATAC-STARR-seq
We performed four ATAC-STARR-seq experiments following the method as described in Hansen & Hodges 2022.50 In brief, we

created two ATAC-STARR-seq plasmid libraries, one for the GM12878 accessible genome and another for the LCL8664 accessible

genome. For a total of four experiments, we electroporated each ATAC-STARR-seq plasmid library into both GM12878 and LCL8664

cells, resulting in the following conditions: GM12878 Library in GM12878 Cells (referred to as HH in text), GM12878 Library in

LCL8664 Cells (HM), LCL8664 Library in GM12878 Cells (MH), and LCL8664 Library in LCL8664 Cells (MM). We repeated the elec-

troporation, harvest, and sequencing library preparation steps for a total for three replicates; replicates were performed on separate

days. The GM12878 library in GM12878 cells was previously analyzed,50 but in a different manner (GEO accession: GSE181317).

Greater detail of the experimental procedure is described below.
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Generation of ATAC-STARR-seq plasmid libraries
For each cell line, a total of eight tagmentation reactions were performed on 50,000 GM12878 cells for each reaction. We followed a

slightly modified version of the Omni-ATAC approach used in Corces et al. 2017.93 Specifically, twice as much Tn5 than described in

the protocol was used. We generated Tn5 transposase in-house following the method described in Picelli et al. 2014.94 and assem-

bled Tn5 transposome as described in Barnett et al. 2020.95 with the following oligos: TN5_1, TN5_2_ME_Comp, and TN5MEREV.

Tagmented products were pooled together and purified with the Zymo Research DNA Clean & Concentrator-5 kit (#D4013). The

entire elution was split and amplified via five-10mL PCR reactions using FWD ATAC-STARR TAG/REV ATAC-STARR TAG primers

and NEBNext High-Fidelity 23 PCR Master Mix (#M0541S). Importantly, this polymerase is not a hot-start formulation, which is

required to first extend tagments before the initial denaturation step of PCR. The PCR was performed with the following cycling pa-

rameters: 72�C 5 min, 98�C 30s; 4 cycles of 98�C 10s, 62�C 30s, 72�C 60s; final extension 72�C 2 min; hold at 10�C. Amplified prod-

ucts were purified with the Zymo Research DNA Clean & Concentrator-5 kit and then analyzed for concentration and size distribution

with a HSD5000 screentape (Agilent, #5067) on an Agilent 4150 TapeStation system. After amplification, we selected PCR products

less than 500bp using SPRISelect beads (Beckman-Coulter, #B23317) at a 0.63 volume ratio of beads:sample. Selection was veri-

fied using a HSD5000 screentape.

To generate a vector for cloning, we linearized the hSTARR-seq_ORI plasmid96 (Addgene plasmid #99296) via a single 50mL PCR

reaction using NEBNext Ultra II Q5Master Mix (NEB, #M0544S) and primers (Fwd_Universal_STARR &Rev_N504_STARR). The PCR

product was purified with the Zymo Research DNA Clean & Concentrator-5 kit and DNA yield was determined by Nanodrop. Purity

was analyzed by gel electrophoresis; the linearized vector was the only product observed on the gel.

To clone tagments into the hSTARR-seq_ORI plasmid, four 10mL gibson cloning reactions were performed for tagments from each

cell line with NEBuilder HiFi DNA Assembly Master Mix at a vector:insert molar ratio of 1:2. As a negative control, we performed one

cloning reaction substituting tagments with nuclease-free water. Gibson products were pooled and purified via ethanol precipitation

as previously described in Sambrook & Russell97; we used glycoblue (150 mg/mL) as a co-precipitant. Purified gibson products were

electroporated into MegaX DH10B T1R Electrocomp Cells (Invitrogen, #C640003) using a Bio-Rad Gene Pulser. Three electropora-

tions for the ATAC-STARR-seq sample (and 1 for the control) were performedwith the following parameters: exponential decay pulse

type, 2kV, 200U, 25mF, and 0.1cm gap distance. Pre-warmed SOC media (1mL) was added immediately following electroporation;

the three reactions were pooled and incubated at 37�C for 1 h. We confirmed cloning success by plating a dilution series—using a

small aliquot from the ATAC-STARR-seq and negative control samples—onto pre-warmed LB agar plates containing 100 mg/mL

ampicillin and visualizing colonies 24 h later. The remaining ATAC-STARR-seq transformation was added directly to a 1L LB liquid

culture with 100 mg/mL ampicillin and grown at 37�C while shaking at 225rpm overnight. The next day, plasmid DNA was harvested

from the 1L culture using the ZymoPURE II Plasmid Gigaprep (Zymo Research, #D4204) and concentration was quantified using a

NanoDrop spectrometer.

Transfection, harvest, and sequencing library preparation
GM12878 and LCL8664 cells were cultured so that cell density was between 400,000 and 800,000 cells/mL on day of transfection.

Three replicates were performed on separate days. For each replicate, a total of 20 electroporation reactions was performed using

the Neon Transfection System 100 mL Kit (Invitrogen, #MPK10025) and the associated Neon Transfection System (Invitrogen,

#MPK5000). For each condidion, 121 million cells were collected, washed with 45mL PBS, and resuspended in 2178mL Buffer

R/T—for HH andMH, we used Buffer R, whereas, for HM andMM, we used Buffer T. For each reaction, 5 million cells (in 90mL Buffer

R/T) were electroporated with 5mg of ATAC-STARR-seq plasmid DNA (in 10mL nuclease-free water) in a total volume of 100mL with

the following parameters: 1100V, 30ms, and 2 pulses. Electroporated cells were dispensed immediately into a pre-warmed T-75 flask

containing 50mL of RPMI 1640 with 20% fetal bovine serum and 2mM GlutaMAX.

To estimated transfection efficiencies, we performed a parallel electroporation with the pcDNA3.1-eGFP plasmid (Addgene,

plasmid #13031) and estimated transfection efficiency as the percentage of GFP positive cells when measured by flow cytometry

24 h later, as previously described.50 Specifically, cells were electroporated following same conditions as above with either purified

pcDNA3.1-eGFP plasmid or nuclease-free water and then prepared for flow cytometry 24 h later at a concentration of 1.253106 cells/

mL in 1xPBS solution containing 1% BSA. We halved both GFP and water samples and stained one-half of each with propidium

iodide (Sigma-Aldrich, #P4864). Unstained cells (water/PI-) were used in conjunction with compensation control cells (GFP/PI- or

water/PI+) to quantify the percentage of living GFP positive cells in the experimental condition (GFP/PI+) via flow cytometry; this per-

centage was the reported transfection efficiency.

24 h after transfection, each 50mL ATAC-STARR-seq flask was divided into two equal volumes; plasmid DNA was extracted from

one volume, while reporter RNAs were extracted from the other. Plasmid DNA was isolated with the ZymoPURE II Plasmid Midiprep

kit (#D4200) and eluted in 50mL 10mM Tris-HCL pH 8.0. Prior to lysis, cells were washed with 25mL PBS to remove any extracellular

plasmid DNA. Reporter RNAs were extracted in a stepwise process. First, total RNA was isolated from the second volume of trans-

fected cells using the TRIzol Reagent and Phasemaker Tubes Complete System (Invitrogen, #A33251). Specifically, 5mL TRIzol was

added to homogenize the washed and pelleted cells. Next, polyadenylated RNA was isolated from total RNA using oligo(dT)25 Mag-

netic Beads (NEB, #S1419S) at a 1mg Total RNA to 10mg beads ratio. We performed this step at 4�C and eluted into 50mL10mM Tris-

HCl pH 7.5. The extracted poly(A)+ RNA was treated with DNase I (NEB, #M0303S). This reaction was cleaned up using the Zymo

Research RNA Clean & Concentrator-25 kit (Zymo Research, #R1018).
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For eachsample, ten50mL reverse transcription reactionswere carried out usingPrimeScript ReverseTranscriptase (Takara, #2680)

anda gene specificprimer (STARR_GSP) as describedbyMuerdter et al. 2018.96 Single-strandedcDNAwas treatedwithRNaseAat a

concentration of 20 mg/mL in low salt concentrations and cleaned up with a Zymo Research DNA Clean & Concentrator-5 kit.

For all reisolated plasmid and reporter RNA samples, Illumina-compatible libraries were generated using NEBNext Ultra II Q5Mas-

ter Mix and a unique combination of the following Nextera indexes: N504-N505 (i5) and N701-N702 (i7), see Table S3 for primer se-

quences. DNA samples were amplified for 8 PCR cycles, while RNA was amplified for 12–13 cycles. In both cases, products were

purified with the Zymo Research DNA Clean & Concentrator-5 kit and analyzed for concentration and size distribution using a

HSD5000 screentape. Purified products were sequenced on an Illumina NovaSeq, PE150, at a requested read depth of 50 or 75

million reads, for DNA and RNA samples, respectively, on an Illumina NovaSeq 6000 machine through the Vanderbilt Technology

for Advanced Genomics (VANTAGE) sequencing core.

RNA-sequencing
Before RNA isolation, we electroporated hSTARR-seq_ORI plasmid (Addgene #99296) into GM12878 and LCL8664 andmatched the

experimental conditions performed for the ATAC-STARR-seq plasmid library transfections, but on a smaller scale. Instead of twenty

100mL electroporation reactions, we performed a single 100mL reaction for each replicate and kept the cell count:DNA ratio (3x106

cells and 3mg plasmid DNA per reaction) and electroporation conditions the same. We performed two replicates each for GM12878

and LCL8664 cell lines.

24 h later, we harvested total RNA using the TRIzol Reagent and Phasemaker Tubes Complete System (Invitrogen, #A33251) and

prepared Illumina-ready RNA-sequencing libraries using the SMARTer Stranded Total RNA Sample Prep Kit – HI Mammalian (Takara

Bio, #634874). Libraries were analyzed for quality and submitted for sequencing on an Illumina NovaSeq 6000 machine, PE150, at a

requested read depth of 50 million reads through the Vanderbilt Technology for Advanced Genomics (VANTAGE) sequencing core.

Dual luciferase reporter assay
Cloning test sequences into pGL4.27

We selected a total of 10 loci to test for luciferase reporter activity—seven human-specific trans only regions, two conserved active

regions, and one human-specific cis only region (ETS1 enhancer in Figure 7)—and designed primer pairs (Table S3) so that both the

human andmacaque DNA sequences could be amplified from the respective genomes (i.e.,i.e. primer binding sites were conserved).

Regions were selected based on analysis of activity scores for the different conditions, focusing on human-specific cis and trans only

regions that displayed qualitatively clear differences (cis or trans only) or similarities (conserved) between conditions. Given that these

sequences were selected based on a combination of technical (e.g., primer design) and scientific considerations, they should not be

viewed as a representative of a random sample or of the most divergent regions. Rather, our goal was to validate that trans diver-

gence does occur in a substantial fraction of regions. Human and macaque DNA sequences were amplified from GM12878 and

LCL8664 genomic DNA, respectively, with NEBNext Ultra II Q5 Master Mix (NEB, #M0544S) following manufacturer guidelines.

Each PCR amplicon was inserted into the multiple cloning site on the pGL4.27[luc2P/minP/Hygro] plasmid vector (Promega,

#E8451) via Gibson cloning. For cloning, we prepared the backbone with a EcoRV and XhoI double digest and used NEBuilder

HiFi DNA Assembly Master Mix (NEB, #E2621S) at a 1:2 vector-to-insert ratio. Gibson products were transformed into NEB

5-alpha Competent E. coli (High Efficiency) cells (NEB, #C2987H) following manufacturer guidelines. Clones were initially screened

for the correct insert size with a NheI and HindIII double digest and later sequence validated via Sanger sequencing (Table S3).

Dual-glo luciferase assay
We performed two rounds (considered biological replicates) of luciferase assays in technical triplicate so that we had six measure-

ments for each sample. For each well/measurement, we electroporated 0.4mg of the pGL4.27 DNA (firefly expressing plasmid con-

taining the respective insert) and 0.04mg pRL-SV40 DNA (renilla expressing plasmid) into 200,000 GM12878 or LCL8664 cells, de-

pending on the sample, in a 96 well plate (�110mL final volume). To electroporate we used the Neon Transfection System with

10mL tips (Invitrogen, #MPK1096) and either Buffer R (for GM12878 cells) or T (for LCL8664 cells) at the following settings (1100V,

30ms, 2 pulses). In separate wells on the same plate, we also transfected 0.4mg of a GFP plasmid (pcDNA3.1-eGFP) to assess trans-

fection efficiency and control for background luciferase during data collection. 24 h after electroporation, we performed a Dual-Glo

Luciferase Assay (Promega, #E2920) following manufacturer guidelines. We measured firefly luciferase and renilla luciferase with a

Promega Glo-Max Discovery luminometer with 10s integration time.

It is challenging to compare dual-luciferase assays across cellular environments because two variables (the expression of firefly

and renilla luciferase) are affected by the cellular environment. Therefore, we used an SV40-driven renilla luciferase as an internal

control—in both GM12878 and LCL8664 cells (Figures S3A–S3C). We adjusted the activity scores (firefly/renilla ratios) so that the

empty ratios were equivalent between GM12878 and LCL8664 cells (See ‘‘luciferase reporter assay analysis’’).

ChIP-qPCR
For cross-linking, 93 106 GM12878 and LCL8664 cells were collected and resuspended in 1X PBS. Cells were fixed with 1% form-

aldehyde and rotated for 6 min at room temperature. Fixation was quenched with 2.5M glycine and mixing for 5 min. Samples were

washed 3x with cold 1X PBS and resuspended in cold lysis buffer (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM ETDA, 0.4% IGEPAL
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CA-630) at a concentration of 750mL/10 million cells. Samples were spun at 600xg for 10 min at 4�C and resuspended in 100mL/3

million cells cold 1% SDS FA Lysis Buffer with protease inhibitors (50 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton

X-100, 1%SDS) and incubated on ice for 15min. Crosslinked chromatin was sonicated using the Bioruptor Plus on high for 20 cycles

of 30s on/30s off. Sonicated chromatin was spun at max speed for 10 min at 4�C and stored at �80�C. Prior to immunoprecipitation

(IP), 5mL sonicated chromatin was set aside to be used as the Input sample. For each IP, 50mL of chromatin was incubated with anti-

body overnight at 4�C; antibodies used were: Rabbit polyclonal H3K27ac antibody (1.1 mg, ab4729, Abcam), Rabbit monoclonal IgG

antibody (1.1 mg, 3900S, Cell Signaling), Rabbit polyclonal IRF4 antibody (1.1 mg, 4964S, Cell Signaling). Protein A/Gmagnetic beads

(Thermo, #88802) were blockedwith BSA and added to IP samples for 4 h at 4�C. IPs were washed 3xwith low salt, high salt, and LiCl

buffers. Crosslinks were removed from input and Ips by overnight incubation with RNaseA at 65�C followed by proteinase K incuba-

tion at 60�C for 2 h. DNA fragments were purifiedwith the ZymoClean &Concentrator-5 kit. For each replicate, 20mL quantitative PCR

reactions were performed in technical triplicate using PowerUp SYBR Green Master Mix (Applied Biosystems, #A25742) on a

StepOnePlus Real-Time PCR System (Applied Biosystems, #4376600). For each reaction, 2mL of the chromatin was added and

primers were supplied at a final concentration of 500nM (Table S3). Percent input was calculated with the following calculation:

2(mean Input Ct – log2(Input Dilution Factor)) – (mean IP Ct) x100.

Western Blot
Cell lysates were collected from GM12878 and LCL8664 cells in RIPA buffer supplemented with protease inhibitors. Protein content

was quantified using the Pierce BCA Protein Assay Kit, and samples were prepared for gel loading (25 mg protein, 5% BME, 6x SDS

buffer) and boiled at 95�C for 5 min. Samples were run on a 4–20%Mini-PROTEIN TGX Precast Protein Gel at 100V for 90 min, trans-

ferred to a PVDF for 2 h at 25V using the XCell II semi-wet transfer system and 20% methanol transfer buffer. The membrane was

blocked with 5%milk in TBS-T overnight at 4�C, incubated with primary antibody (1:1000 dilution in 5%milk) for 2 h at room temper-

ature,washed3xwith TBS-T, and incubatedwith secondary antibody for 1 h at room temperature. Themembranewaswashed3xwith

TBS-T prior to incubation with Pierce ECL Western Blotting Substrates and imaged using the colorimetric and chemiluminescence

channels of the BioRad ChemiDocMP imaging system. Primary antibody (Rabbit polyclonal H3K27ac antibody, Abcam ab4729; His-

tone H3 rabbit monoclonal antibody, Cell Signaling #4499; IRF4 rabbit polyclonal antibody, Cell Signaling #4964; beta-actin rabbit

monoclonal antibody, Cell Signaling #8457). Secondary antibody (Goat anti-rabbit IgG-HRP, sc-2030, Santa Cruz Biotechnology).

QUANTIFICATION AND STATISTICAL ANALYSIS

ATAC-STARR-seq read processing
FASTQ files were trimmed and analyzed for quality with Trim Galore! (https://www.bioinformatics.babraham.ac.uk/projects/

trim_galore) using the –fastqc and –paired parameters. Trimmed reads were mapped to hg38 with bowtie2 using the following pa-

rameters: -X 500 –sensitive –no-discordant –no-mixed.98 Mapped reads were filtered to remove reads with MAPQ <30, reads map-

ping to mitochondrial DNA, and reads mapping to ENCODE blacklist regions using a variety of functions from the Samtools software

package.99 When desired, duplicates were removed with the markDuplicates function from Picard (https://broadinstitute.github.io/

picard/). Read count was determined using the flagstat function from Samtools. Library complexity was measured using the Estima-

teLibraryComplexity function from Picard and plotted with ggplot2 in R.100 Correlation plots were generated with the deepTools

package.101 Read counts for 1kb genomic windows were compared between the filtered, with-duplicates bam files using the multi-

BamSummary bins function and the following parameters: -e and –binSize 1000. Plots were generated using the plotCorrelation func-

tion and the following parameters: –skipZeros –corMethod pearson.

Chromatin accessibility peak calling and filtering
Accessible chromatin (ChrAcc) peaks were called in all four conditions (GM12878inGM12878, LCL8664inLCL8664,

GM12878inLCL8664, LCL8664inGM12878) using Genrich with the -j parameter, which specifies ATAC-seq mode (https://github.

com/jsh58/Genrich). For each condition, de-duplicated bam files for the three plasmid DNA replicates were provided to the peak cal-

ler; as part of peak calling, Genrich collapses replicates to yield one peak set for the given condition and uses variance between rep-

licates to assign q-values. Peaks were filtered by q-value so that the genomic coverage of the entire peak set for a given condition

was�1.8% (q-value thresholds ranged between 1.1e�7 and 4.3e�6). The purpose of filtering for genomic coverage of each peak set

was to account for data quality differences between the samples. This allows us to compare themost accessible 1.8% of the respec-

tive genomes rather than regions defined by a significance threshold. We compared several different genome coverages but qual-

itatively determined 1.8% best reflected true accessible peaks when looking at read pileup in a genome browser. We subsequently

removed XY chromosomes since LCL8664 is male and GM12878 is female. Together, this yielded between 58,000–63,000 peaks for

each of the four experiments. Peaks called in rheMac10 coordinates (LCL8664inGM12878 and LCL8664inLCL8664) were converted

to hg38 coordinates using liftOver with -minMatch set to 0.9.

Differential accessibility analysis
We intersected the filtered ChrAcc peaks from each experiment using the default parameters of BEDTools intersect102 to isolate

ChrAcc regions shared across all four contexts—this resulted in 29,531 shared ChrAcc peaks (Figure 1D). To obtain specific-specific
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accessible regions, we intersected only the GM12878inGM12878 and LCL8664inLCL8664 ChrAcc peaksets andwrote non-overlaps

using the -v parameter. We performed motif enrichment using the findMotiftsGenome.pl script from the HOMER package (http://

homer.ucsd.edu/)103 using the following parameters: -size given -mset vertebrates. We used ChIPSeeker to annotate differential

accessible regions based on their distance to the nearest TSS (annotatePeak, level = gene & tssRegion = -2000/+1000), assign near-

est neighbor genes, and perform Reactome pathway enrichment analysis using the assigned genes.104,105 For the annotation plot-

ting, we removed the Downstream (<=300) term from the legend to simplify, since we did not observe assignments to that term.

Genome browser
The respective genome browser tracks in Figure 1E, 6D, and 7A were viewed in the hg38 build using the UCSC genome browser106

and a combination of custom and public tracks. PDFs of these views were downloaded and further annotated in illustrator; positions

of the tracks did not change during illustrator editing.

Active region calling within shared accessible peaks
Our active region calling, and differential activity analysis workflow is outlined as a schematic diagram in Figures S2A–S2J.

Generation of sliding window bins

We first merged all four ChrAcc peak sets (hg38 coordinates) into a single file with the UNIX cat function followed by BEDToolsmerge

to generate a merged set of all peaks. Since ChrAcc peaks contain both active and silencing regulatory elements, it is important to

divide peaks into smaller windows to best identify the element driving activity.50 To do this, we tiled the merged peak set with sliding

windows usingBEDToolsmakewindows and the -s 10 -w 50 parameters; bins smaller than 50 bp were removed. This generated 7.65

million bins for analysis.

Filtering bins for alignability and shared accessibility

To perform comparative analyses between human and macaque genomes, we required that all bins were mappable between hg38

and rheMac10 in a 1:1 orthologous fashion and with at least 90% alignability. To do this, we used liftOver with -minMatch = 0.9 to

convert our bins from hg38 coordinates to rheMac10 and bins that did not map from hg38 to rheMac10 were removed from the

hg38 file. Furthermore, bins that changed size by more than +/� 2bp in the liftOver were excluded from the analysis. Altogether,

this removed �552,000 bins (�7.3%).

Because differentially accessible regions would be only assayed in one ATAC-STARR-seq plasmid library, they would confound

differential activity measures when comparing the respective genomes. For this reason, we also required that our bins overlap shared

ChrAcc accessible peaks by intersecting the alignability-filtered bins with the 29,531 shared ChrAcc peaks described above; we

used BEDTools intersect with the -u option set. This resulted in 2,028,304 (26.5%) sliding window bins for further analysis.

Active region calling

We called active regions for each of the four experimental conditions using the 2,028,304 filtered sliding window bins as input. To

control against sample-to-sample variability, we called the top 10,000 most significantly active regulatory regions in each condition.

By comparing the same number of DNA regulatory elements across conditions, we assume that a similar number of regions are active

in each of the four experiments. This is a more conservative assumption than comparing regions called with the same q-value

threshold across experiments, which can be greatly influenced by data quality differences and may not accurately reflect biology

in a comparative analysis. We compared the results of calling different active region thresholds including the top 5,000, 10,000,

25,000, and 50,000 (Figures S2C and S2D).

To call active regulatory regions, we first assigned reads to the filtered sliding window bins using the featureCounts function from

the Subread package with the following parameters: -p -B -O –minOverlap 1107; for rheMac10 mapping reads, we used bins in rhe-

Mac10 coordinates (linked to hg38 coordinates by a unique bin ID). To avoid negative data interpretations, we next removed bins with

a count of zero for any RNA or DNA replicate; between 8,775 and 70,819 bins were removed in each condition.We then quantified the

activity of each bin by comparing RNA and DNA counts using DESeq2 (fitType = "local").108 To obtain the top 10,000 most signifi-

cantly active regions in each condition, we adjusted Benjamini-Hochberg adjusted p value thresholds to yield active bins that when

merged in genomic space resulted in about 10,000 active regions for each condition–padj thresholds ranged between 0.026 and

0.11. To ensure our active regions were robust regulatory elements, we required that each region be made up of at least 5 bins

by using BEDTools merge with the -c option and a custom awk script. For the supplemental analysis investigating threshold effects

on cis and trans divergent regions calls, we followed the same process of adjusted padj thresholds to yield the desired active region

count and then performed the samemethods as described above to identify cis and trans divergent regions. We used ChIPSeeker to

annotate the active regions in each condition based on their distance to the nearest TSS (annotatePeak, level = gene & tssRegion =

-2000/+1000). For the annotation plotting, we removed the Downstream (<=300) term from the legend to simplify, since we did not

observe any assignments to that term.

Generation of ATAC-STARR-seq activity bigWigs

We generated ATAC-STARR-seq activity signal files with the deepTools package; to streamline this, we created a custom python

script, which is available on the ATAC-STARR-seq method GitHub (github link; generate_ATAC-STARR_bigwig.py). We compared

the log2 ratio of cpm-normalized RNA and cpm-normalized files using the bigwigCompare function and the following parameters:

--operation log2 –pseudocount 1 –skipZeroOverZero; the cpm-normalized bedGraph files for RNA and DNA were generated using

the bamCoverage function and the following parameters: -bs 10 –normalizeUsing CPM. MH and MM activity signal files were
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converted from bigwig to bedGraph (with the bigWigToBedGraph function from UCSC), lifted over to hg38 coordinates from rhe-

Mac10 coordinates with Crossmap,109 and then converted back to bigwig files using the bedGraphToBigWig function from

UCSC. We generated bigwigs for individual replicates, as well as for merged replicate bam files.

Heatmaps of ATAC-STARR-seq activity at active and inactive bins

We first subsampled the inactive bins for each condition using the Unix shuf command (-n 150000) to reduce the number of regions

plotted. ATAC-STARR-seq activity signal files for each replicate were plotted at their respective active and randomly subsampled

inactive bins using the computeMatrix function (parameters: -a 500 -b 500 –referencePoint center -bs 25 –missingDataAsZero)

and the plotHeatmap function (parameters: –sortRegions no –zMin �0.5 –zMax 0.5), both from deepTools.

Differential activity analysis
HH vs. MM activity comparison

To identify conserved and species-specific active regions, we intersected the HH active regions with the MM active regions using

BEDTools intersect. We called regions with at least a 50% reciprocal overlap as conserved active regions, whereas HH active regions

that did not reciprocally overlap by at least 50%were classified as human-specific active regions andMM active regions that did not

reciprocally overlap by at least 50% were classified as macaque-specific active regions. For all intersections, we used the following

parameters: -f 0.5 -F 0.5 -e. This turns the 50% reciprocal into an ‘‘or’’ operation where either regions A&B are considered conserved

active if either A or B overlaps the other by greater than 50%. This avoids mislabeling nested overlaps as differentially active where A

could overlap B with 100% but B could be two times larger than A and therefore not overlap A by 50%. For the conserved active

regions, we wrote the entire interval of the two overlapping regions using a combination of BEDTools intersect andmerge in a custom

script. We used the -v option in addition to the parameters listed above to write differentially active.

Identification of cis divergent regions and trans divergent regions

We determined if divergent active regions were a result of a change in the DNA sequence (cis) or a change in the cellular environment

(trans) by intersecting species-specific active regionswith the active region set from the relevant condition. For example, human-spe-

cific cis divergent regions were determined by intersecting the human-specific active regions with the MH active region set using

BEDTools intersect. Human-specific active regions that did not reciprocally overlap by at least 50% were determined to be Hu-

man-specific cis divergent regions (parameters: -v -f 0.5 -F 0.5 -e). The other comparisons are indicated in Figure 2 and were per-

formed in the same way as described above.

Identification of cis & trans regions

To identify regions that were divergent in both cis & trans, we asked if the exact same region was contained in both the cis and trans

divergent region sets using BEDTools intersect and the -f 1.0 -r parameters; we maintained species-specificity by only comparing

human-specific cis with human-specific trans and macaque-specific cis with macaque-specific trans. Regions that were unique

to the cis region set were classified as cis only, while regions that were unique to the trans region set were classified as trans only.

Observed vs. expected analysis of active region overlaps

We calculated the expected overlap assuming random distribution in shared accessible chromatin for all differential activity compar-

isons. Todo this,we first randomly shuffled theMM,HM, andMHactive region setswithin sharedaccessible chromatinwithBEDTools

shuffle (1000 iterations with the -noOverlapping parameter). This yielded 1000 sets of randomly positioned active region sets for MM,

HM, and MH within the analytical space of shared accessible chromatin. For each of the 1000 shuffled region sets per condition, we

determined the expected number overlaps by intersecting themwith either theHH active, the human-specific active, or themacaque-

specific active regions using BEDTools intersect in the same manner done for the observed value. We then compared the expected

overlap distribution with the observed value and performed Grubb’s Test in R to test if the observed value was a statistical outlier.

Heatmaps comparing ATAC-STARR-seq activity between conditions

ATAC-STARR-seq activity signal files were plotted at the respective regions using the computeMatrix function (parameters: -a 1000

-b 1000 –referencePoint center -bs 10 –missingDataAsZero) and the plotHeatmap function (parameters: --sortRegions no --zMin

�0.5 --zMax 0.5), both from deepTools.

Activity vs. accessibility analysis

ATAC-STARR-seq activity signal (see STAR Methods above) and ATAC-STARR-seq accessibility signal files (see STAR Methods of

Hansen & Hodges et al. 2022)50 were mapped to the respective region sets using multiBigwigSummary from the DeepTools pack-

age101 To map rheMac10 bigwigs to the respective region sets, regions were converted from hg38 coordinates to rheMac10 via

liftOver (default settings) prior to mapping the rheMac10 signal. Average signal values per region were extracted with the –outRaw-

Counts setting. For the HH active andMM active region plots, we added a pseduocount to accessibility values and log2-transformed

them. For all comparisons, spearman correlation values were calculated with stat_compare_means from the ggpubr package

(https://rpkgs.datanovia.com/ggpubr/).

Functional characterization of cis and trans divergent regions
Annotation

We used ChIPSeeker to annotate cis only, trans only, cis & trans, and conserved active regions based on their distance to the nearest

TSS (annotatePeak, level = gene & tssRegion = -2000/+0). For the annotation plotting, we removed the Downstream (<=300) term

from the legend to simplify, since we did not observe assignments to that term.
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TF Motif enrichment

We first generated background regions for each region set by shuffling the respective regions within shared accessible chromatin 10

times using bedtools shuffle and the -chrom -noOverlapping -maxTries 5000 parameters. We then performed motif enrichment using

the findMotiftsGenome.pl script from theHOMERpackageusing the respectivebackgroundand the -size given and -mset vertebrates

parameters. The top 15 motifs for each region set were selected for plotting using pheatmap and the following parameters: scale =

"row", cluster_cols = FALSE, cluster_rows=TRUE, cutree_rows= 7, cellheight = 15, cellwidth = 30,method= "ward.D2’’.Motifswithin

the samemotif archetype11 were collapsed so that only one motif of that archetype was displayed on the heatmap in the main figure.

Gene ontology

We performed gene ontology on the putative target genes for cis only, trans only, cis & trans, and conserved active regions using

GREAT110 (http://great.stanford.edu/public/html/). We used the whole genome as background and assigned genes with the default

Basal plus extension option. The top 10 terms were plotted in R.

Histone modification heatmaps

GM12878 ChIP-seq bigwig files for H3K27ac (ENCFF469WVA), H3K4me3 (ENCFF564KBE), and H3K4me1 (ENCFF280PUF) were

downloaded from the ENCODE consortium60 and plotted at conserved active, human-specific cis only, human-specific trans only,

and human-specific cis & trans regions with deepTools. Specifically, we used the computeMatrix function, with the following param-

eters: -a 2000 -b 2000 –referencePoint center -bs 10 –missingDataAsZero and the plotHeatmap function with the following key pa-

rameters: –sortUsing mean –sortUsingSamples 1 (the H3K27ac file).

Distance to ChrAcc peak summits

We first extracted region centers in R using the following operation: center = ((End-Start)/2)+start; decimals were rounded up to

integers. The ChrAcc peak summits are provided in the original narrowPeak file for GM12878 ChrAcc peaks, so we obtained

peak summits for the shared accessible peaks by intersecting shared peaks with the human-active peak file. The distance between

region center and peak summit was calculated using the bedtools closest function and the -D ref parameter. This distance was then

plotted as a density plot with ggplot2 in R.

To generate the H3K27ac profile plot, we plotted the GM12878 H3K27ac bigwig from ENCODE at ChrAcc peak summits using

deepTools with the computeMatrix function (parameters: -a 500 -b 500 –referencePoint center -bs 10 –missingDataAsZero) and

the plotProfile function. We repeated for the 17-way PhyloP bigwig after downloading from the UCSC genome browser (http://

hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP17way/hg38.phyloP17way.bw).

Generating expected background datasets from shared accessible, inactive regions
We identified all shared accessible peaks from any of the four (HH, HM, MH, MM) experiments. We then used BEDTools to subtract

active, shared accessible peaks, leaving a set of shared accessible, but inactive peaks. Then, we shuffled active regions with

BEDTools (-noOverlapping -maxTries 5000) in this shared accessible, inactive genomic background 10x to produce length-matched

expectation datasets for each set of cis, trans, and cis & trans regulatory elements. We used these elements as our background to

interpret evolutionary and genomic features of active and divergent elements.

TF footprinting
Transcription factor footprinting was performed using the TOBIAS software package.111 For both the GM12878inGM12878 and

LCL8664inLCL8664 samples, we usedATACorrect to generate Tn5-bias corrected cut count signal files fromdeduplicated bamfiles.

We then used the corrected cut-counts files to calculate TF binding in the respective genomes using the ScoreBigWig function. We

then paired all core non-redundant vertebrate JASPARmotifs112 with the GM12878 and LCL8664 TF binding profiles to call individual

transcription factor footprints in the two genomes using the BINDetect function and the –bound-pvalue parameter set to 0.05. Motifs

with a footprint were classified as bound, while motifs without a footprint were classified as unbound. Aggregate plots were gener-

ated using the deepTools package. Tn5-corrected signal wasmeasured at bound and unbound sites for each respective TF using the

computeMatrix reference-point function with the following key parameters: -a 75 -b 75 –referencePoint center –missingDataAsZero

-bs 1. The resulting matrix was plotted using the plotProfile function.

To determine differential footprinting at specific loci, we compared the TFmotifs that footprinted in human and rhesus.Wemapped

the position of rhesus pieces in hg38 by lifting the TF footprint coordinates from rheMac10 using LiftOver software from UC

Santa Cruz.

Trans only TF footprint enrichment vs. differential expression

We evaluated footprints for each TF for enrichment in human-specific and macaque-specific trans only regions compared to 10x

length-matched expected regions. Enrichment scores were computed using Fisher’s Exact Test with a BH adjusted two-sided p

value <0.05. We intersected the enrichment score with the differential expression values of the specified TF (see gene expression

analysis – differential expression analysis below). We removed footprints associated with TF multimers, for example the SMAD2-

SMAD3-SMAD4 motif, so that only individual TFs, such as SMAD3, were assigned differential expression values. We also removed

TFs that were not analyzed in the differential expression analysis, likely because they did not meet the 1:1 orthology requirement.

Altogether, 386 TFs were retained for plotting. Scatterplots were made with ggplot2 and text was plotted for TFs with a footprint

enrichment log2OR > 0, footprint enrichment padj < 1x10�10, differential expression log2FC > 0 (log2FC < 0 for macaque-specific),

and a differential expression padj < 1x10�50 (padj < 1x10�20 for macaque-specific). For the TFs that met these criteria, which we
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defined as putative trans regulators, we intersected their footprints (BEDTools intersect: default parameters) with the respective trans

only regions to determine the percentage with the given footprint. In a few cases we merged TF footprints, because some of the TFs

shared the same motif archetype,11 for example IRF4, IRF7, and IRF8.

ATAC-STARR active region enrichment in external gene regulatory datasets
FANTOM eRNA

B cell FANTOM eRNA dataset from the FANTOM5 consortium59 was downloaded (April 19, 2019) and lifted over to hg38 using

LiftOver from UCSC. We intersected our ATAC-STARR-seq regions and corresponding shuffled dataset with FANTOM B cells using

the bedtools intersect command. We considered overlap for any region where 1 base pair overlapped with a FANTOM eRNA. We

then tested whether the number of HH, MM, or conserved active regions overlap more FANTOM eRNA than length-matched shuffled

datasets created from the background of shared accessible, but inactive regions using a Fisher’s Exact Test to compute the odds

ratio and two-sided p value. We corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure with 5% false

discovery rate.

ENCODE GM12878 cCRE

GM12878 cCRE data from ENCODE60 was downloaded (screen.encodeproject.org; October 19, 2021). We intersected our ATAC-

STARR-seq regions and corresponding shuffled dataset with GM12878 datasets using the bedtools intersect command. We consid-

ered overlap for any region where 1 base pair overlapped with a cCRE element. We then stratified overlap by cCRE gene regulatory

annotations (promoter-like elements, proximal- and distal-enhancer elements +/� CTCF-bound elements, DHS, and H3K4me3 ele-

ments) and compared the number of HH active regions overlapping these cCRE annotations compared with length-matched shuffled

datasets created from the backgroundof shared accessible, but inactive regions, computing a Fisher’s Exact Test odds ratio and two-

sided p value. We corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure with 5% false discovery rate.

ChromHMM

GM12878 15-state coremakes chromHMMpredictions61 were downloaded from https://egg2.wustl.edu/roadmap/data/byFileType/

chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E116_15_coreMarks_hg38lift_dense.bed.gz (E116, last

downloaded May 15th, 2023). We intersected our ATAC-STARR-seq regions and corresponding shuffled dataset with GM12878

ChromHMMpredictions using the bedtools intersect command. We considered overlap for any region where 1 base pair overlapped

with a ChromHMM annotation. We then stratified overlap by the 15-state core model annotations and performed a Fisher’s Exact

Test comparing the number of HH active regions overlapping these chromHMMannotations comparedwith length-matched shuffled

datasets created from the background of shared accessible, but inactive regions. We corrected for multiple hypothesis testing using

the Benjamini-Hochberg procedure with 5% false discovery rate.

SEdb2

GM12878 super enhancer and typical enhancer hg38 elements62 were downloaded from http://licpathway.net/SEanalysis/ (last

downloaded May 12th, 2023). We intersected our ATAC-STARR-seq regions and corresponding shuffled dataset with GM12878

enhancer predictions using the bedtools intersect command. We considered overlap for any region where 1 base pair overlapped

with an enhancer annotation. We then stratified overlap by super enhancer or typical enhancer and calculated the odds ratio that

the number of HH active regions overlapped SEdb2 annotations compared with overlap in the length-matched shuffled datasets

from the background of shared accessible, but inactive regions, using Fisher’s Exact Test. We corrected for multiple hypothesis

testing using the Benjamini-Hochberg procedure with 5% false discovery rate.

Rhesus macaque LCL ChromHMM

ChromHMMpromoter and enhancer region calls from rhesus macaque LCLs fromGarcia-Perez 202156 weremapped from rheMac8

to hg38 using liftOver tools. These elements were intersected with HH active regions. We first computed as the fraction of elements

that overlapped each ChromHMM promoter and enhancer category (strong, poised, and weak). Then, enrichment was computed

against the10x elements shuffled in the shared accessible, inactive background expectation using Fisher’s Exact Test and a

Benjamini-Hochberg 5% FDR correction.

Evolutionary characterization of cis and trans divergent regions
PhastCons enrichment analysis

We intersected active regions with 30-way MultiZ PhastCons elements—derived from an alignment of 27 primate species and three

mammalian outgroup species113,114—(last downloaded September 22nd, 2021, from http://hgdownload.cse.ucsc.edu/goldenPath/

hg38/phastCons30way/) using BEDTools with standard parameters. A region was considered conserved when it overlapped at least

1 bp of a PhastCons element. For each category with activity differences between humans and rhesus macaques, we quantified

PhastCons element enrichment in that category versus the matched 10x expectation sets using Fisher’s Exact Test with a BH

adjusted two-sided p value <0.05. Unless specified, in the evolutionary analyses, we combined human and macaque elements

and evaluated their characteristics in the human genome.

Bootstrapped difference in fraction of phastCons, human accelerated, and transposable element overlap between

trans- and cis-only elements

We applied a bootstrapping approach to compare whether differences in the fraction of trans-only elements overlapping phastCons

elements was greater than the fraction of cis only overlapping elements. To create an expected distribution of the phastCons overlap
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difference between cis- and trans-elements, we randomly sampled cis- and trans-elements (matching the sizes of the observed data-

sets), intersected these elements with phastCons elements and quantified the fraction of elements that overlapped phastCons. We

repeated this bootstrap process 10,000 times. For each bootstrap, we subtracted the fraction of shuffled cis-phastCons overlaps

from the fraction of shuffled trans-phastCons overlaps, or vice versa depending on the direction of effect. We compared the observed

difference in phastCons overlapping fractions between cis and trans with the expected fraction differences from the bootstrapped

distribution and tested statistical significance in the overlap difference using a two-sided t-test. Similar procedures were performed

for human accelerated and transposable element overlaps to confirm differences between groups.

Human acceleration enrichment analysis
We estimated human acceleration fromATAC-STARR-seq bins using the phyloP function from the Phast tools suite (http://compgen.

cshl.edu/phast/). Short term estimates of human acceleration and conservation (–mode CONACC) were calculated between the hu-

man and chimp branches against the 30-way neutral tree model (–g hg38.phastCons30way.mod) using the likelihood ratio test

(--method LRT). For long term estimates of human acceleration, we first trimmed themodel tree to remove any species on the human

branch that emerged after the most recent common ancestor between humans and rhesus macaques, then used this trimmed

neutral tree model to quantify acceleration and conservation (described above). Bins with a phyloP score threshold < �1 were

considered accelerated. We removed any bins from the acceleration analysis that overlapped human duplicated regions (hg38

SELF-CHAIN) withR 1 bp overlap using the BEDTools subtract function. To assign a single human acceleration value to each active

region andmatched expectation, we chose the bin with theminimum phyloP value to represent the entire region (i.e., the most accel-

erated value). We estimated human acceleration enrichment as the number of human accelerated regions (phyloP < �1.0, corre-

sponding to a p value <0.10) in a divergently active group versus matched expected acceleration values.

Repeatmasker transposable element enrichment

We downloaded hg38 repeatmasker coordinates from the UCSC genome browser (last downloaded August 21st, 2021). Active re-

gions andmatched expectation sets were intersected with TE coordinates using BEDTools, and active regions were assigned TE if a

TE overlapped R1bp. We used Fisher’s Exact Test with a BH adjusted two-sided p value <0.05 to compute the enrichment of TEs

overlapping active elements versus matched expectation datasets. For family-specific analysis, we stratified by TE family overlap

and quantified TE enrichment as the number of elements overlapping a TE family per activity category (e.g., cis only) and all other

activity category datasets using Fisher’s Exact Test with a BH adjusted two-sided p value <0.05.

TF footprint enrichment for SINE/Alu cis & trans regions

We evaluated GM12878 TF footprints for enrichment in cis & trans regions that overlapped SINE/Alu transposable elements

compared to expected regions. Enrichment scores were computed using Fisher’s Exact Test with a BH adjusted two-sided p value

<0.05.

Assigning sequence ages

The genome-wide hg38 100-way vertebrate multiz multiple species alignment was downloaded from the UCSC genome browser.

Each syntenic block was assigned an age based on the most recent common ancestor (MRCA) of the species present in the

100-way alignment block. Regions and matched shuffles were intersected with syntenic blocks and the maximum age for each re-

gion was selected as the representative age. For most analyses, we focus on theMRCA-based age, but when a continuous estimate

is needed, we use evolutionary distances from humans to the MRCA node in the fixed 100-way neutral species phylogenetic tree.

Estimates of the divergence times of species pairs in millions of years ago (MYA) were downloaded from TimeTree.115 Sequence

age provides a lower-bound on the evolutionary age of the sequence block. Sequence ages could be estimated for 94% of the auto-

somal bp in the hg38 human genome.

Multiple sequence origin enrichment analysis

After assigning sequence ages to regions (above), we quantified howoften regions overlappedmultiple sequence ages (referred to as

multi-origin sequences) withR6 base pairs per age.We compared the number ofmulti-origin sequences in cis-, trans- and cis & trans

categories with their length-matched expectation sets (see above section Generating expected background datasets from shared

accessible, inactive regions) and computed enrichment using Fisher’s Exact Test and a two-sided p value.

Human variant enrichment analysis
eQTL enrichment

We intersected each divergent activity category with eQTL from GTEx (version 8; last downloaded April 30th, 2018) using BEDTools

with standard parameters. To measure whether the observed number of eQTL variants was more than expected, we permuted reg-

ulatory element sets 1000x in a background set of length-matched shared accessible, inactive peaks and quantified the fold-changes

as the number of observed eQTL variants divided by themedian number of expected eQTL variants. We calculated one-sided empir-

ical p values from the number of eQTL overlaps in the expected sets that were equal to or more extreme than the observed number of

eQTL overlaps. We bootstrapped (n = 10,000) the 95% confidence intervals by estimating the distribution of fold-changes from the

observed count with each of the 1000 expected overlaps.

UKBB GWAS trait enrichment

We selected a set of immune, inflammatory, and B cell related traits from the UKBB pan-GWAS. For each trait, we included only the

tag-SNPswith genome-wide significance (p < 5.5-e8) and LD-expanded those tag-SNPs to include variants in perfect LD (R2 = 1.0) in
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European populations from 1000 genomes.116 We removed any active regions that overlapped the HLA locus in hg38

(chr6:28898751-33807669), including 4 cis only, 1 cis & trans, 1 trans only, and 0 conserved active elements. We then intersected

the accessible peaks containing divergently active regions with LD-expanded, significant GWAS SNPs using BEDTools with stan-

dard parameters. To measure whether the observed number of GWAS variants was more than expected, we shuffled each divergent

set of regulatory elements 1000x in a background set of length-matched shared accessible, inactive regions and quantified the fold-

changes as the number of observed GWAS variants divided by the median number of expected GWAS variants. We calculated one-

sided empirical p values from the number of GWAS overlaps in the expected sets that were equal to or more extreme than the

observed number of GWAS overlaps. We bootstrapped (n = 10,000) the 95% confidence intervals by estimating the distribution

of fold-changes from the observed count with each of the 1000 shuffled overlaps.

Gene expression analysis
Data collection

In addition to the RNA-seq experiments described above, we downloaded and analyzed FASTQ files from the following publications:

Cain et al., 2011 - GEO: GSE24111 (SRR066745-7, SRR066751-3); Blake et al., 2020 - GEO: GSE112356 (SRR6900782-

SRR6900812); Calderon et al., 2019 - GEO: GSE118165 (SRR11007061, 071, 082, 090, 092, 094, 096, 113, 121, 124, 126, 127,

137, 147, 156, 158, 160, 170, 183, 186, 188, 190; SRR7647654, 656, 658, 696, 698, 700, 731, 767, 768, 769, 807, 808), and the

ENCODE GM12878 Wold total RNA-seq (ENCODE: ENCFF248MER, ENCFF006YWA, ENCFF294LGZ, ENCFF995BLA) and Gin-

geras polyA plus RNA-seq (ENCODE: ENCFF001REH - ENCFF001REK) datasets. The FASTQ files from these datasets and our

GM12878 and LCL8664 data were processed in the same way.

Fastq processing of RNA-seq data

Raw reads were trimmed and analyzed for quality with Trim Galore! using the –fastqc and –paired parameters. To avoid bias arising

from duplicated genes, we restricted our analysis to 1:1 orthologous exons that we obtained from XSAnno117 (https://hbatlas.org/

xsanno/files/Ensembl-v64-Human-Macaque: Ensembl.v64.fullTransExon.hg19TorheMac2.hg19.bed and Ensembl.v64.fullTransEx-

on.hg19TorheMac2.rheMac2.bed). The hg19 file was converted to hg38 coordinates using liftOver. Because no rheMac2 to rhe-

Mac10 map chain file existed, we first converted rheMac2 coordinates to rheMac8 and then to rheMac10. We then mapped trimmed

reads to the 1:1 orthologous exons in the respective genome using the STAR aligner118 (alignReads function); we built an STAR index

for each genome for each Illumina read length type (150nt, 50nt, 35nt, and 100nt) and applied it to the respective sample. We next

counted reads in each 1:1 orthologous exon using the featureCounts function from subread107; for our samples, we set the -s param-

eter to 1 because they were stranded RNA-seq datasets, while all others were set to 0 (unstranded). For paired datasets, we also

specified the -p and -B options. We applied the -O option to all datasets.

Differential expression analysis

GM12878 vs. LCL8664. We performed differential expression analysis with DESeq2 and extracted results using the lfcShrink func-

tion and apeglm shrinkage algorithm, which shrinks the effect size of low count data.108,119 Because GM12878 and LCL8664 are

different sexes, we removed sex chromosomes prior to conducting the differential expression analysis. We defined human-specific

expressed genes as those with a log2FC > 2 and a padj < 0.001, while macaque-specific expressed genes had a log2FC < �2 and a

padj <0.001. We used ChIPSeeker and ClusterProfiler to perform Reactome pathway enrichment analysis using the differentially

expressed gene sets120; we plotted the top five to six categories in each case.

Human LCLs vs. Macaque LCLs. We used RNA-seq data for three additional human LCLs and three additional macaque LCLs—

from Cain et al., 2011 (see data collection above)—in combination with our GM12878 and LCL8664 RNA-seq data. We collapsed

technical replicates and performed differential expression analysis with DESeq2 with the design formula: � batch + species, where

batch distinguishes the data from Cain et al. from our data. We decided to include this batch variable since libraries were prepared

differently and sequencing was performed differently (paired-end versus single-end). We extracted results in the standard manner

and intersected with a public list of human TFs (http://humantfs.ccbr.utoronto.ca/download/v_1.01/TF_names_v_1.01.txt) to obtain

scores for TFs only. We plotted all TFs in gray and highlighted our putative trans regulators using custom ggplot2 code.

TPM normalization and correlation between human and macaque LCLs

For each of our GM12878 and LCL8664 replicates, we normalized read counts so that they represented transcripts per million (TPM);

we first calculated RPKM [10̂ 9 * (reads mapped to transcript/(total reads * length of transcript))] and then converted to TPM [10̂ 6 *

(RPKM/(sum(RPKM)))]. We then calculated themean TPM for each gene between the two replicates, added a pseudo count of 1, and

log10 normalized the values. We then plotted the GM12878 and LCL8664 values on a 2D bin plot; both Pearson and Spearman’s cor-

relation coefficients were calculated using the mean TPM values.

Principal component analysis

For each of the samples plotted in each PCA, we first extracted variance stabilizing transformed (VST) count values from the DESeq

Dataset (dds) with the vst function (blind = TRUE) and then plotted principal components 1 and 2 using the plotPCA function (both

functions from the DESeq2 package).

Luciferase reporter assay analysis
We first subtracted each measurement by the background luminescence provided by the GFP samples to obtain a background cor-

rected score. Onemeasurement was removed that likely did not electroporate because it had a corrected renilla luciferase value <10.
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We then calculated the firefly/renilla activity ratio for every measurement by dividing the background-corrected firefly value with the

background-corrected renilla value. To create our cellular environment adjusted ratio, we first calculated an adjustment factor by

subtracting the average empty-GM12878 firefly/renilla activity ratio with the average empty-LCL8664 firefly/renilla activity ratio.

We then subtracted this adjustment factor from each GM12878 cellular environment measurement to generate an adjusted ratio

value. P-values for each comparison were calculated with a two-sidedWilcoxon rank-sum test via the stat_compare_means function

from the ggpubr package (https://rpkgs.datanovia.com/ggpubr/) (n R 5).
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