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Disease-specific prioritization
of non-coding GWAS variants
based on chromatin accessibility

Qianqian Liang,1,2 Abin Abraham,3 John A. Capra,4 and Dennis Kostka1,5,*
Summary
Non-protein-coding genetic variants are a major driver of the genetic risk for human disease; however, identifying which non-coding

variants contribute to diseases and their mechanisms remains challenging. In silico variant prioritization methods quantify a variant’s

severity, but for most methods, the specific phenotype and disease context of the prediction remain poorly defined. For example,

many commonly used methods provide a single, organism-wide score for each variant, while other methods summarize a variant’s

impact in certain tissues and/or cell types. Here, we propose a complementary disease-specific variant prioritization scheme, which is

motivated by the observation that variants contributing to disease often operate through specific biological mechanisms. We combine

tissue/cell-type-specific variant scores (e.g., GenoSkyline, FitCons2, DNA accessibility) into disease-specific scores with a logistic regres-

sion approach and apply it to�25,000 non-coding variants spanning 111 diseases. We show that this disease-specific aggregation signif-

icantly improves the association of common non-coding genetic variants with disease (average precision: 0.151, baseline ¼ 0.09),

compared with organism-wide scores (GenoCanyon, LINSIGHT, GWAVA, Eigen, CADD; average precision: 0.129, baseline ¼ 0.09).

Further on, disease similarities based on data-driven aggregation weights highlight meaningful disease groups, and it provides informa-

tion about tissues and cell types that drive these similarities. We also show that so-learned similarities are complementary to genetic sim-

ilarities as quantified by genetic correlation. Overall, our approach demonstrates the strengths of disease-specific variant prioritization,

leads to improvement in non-coding variant prioritization, and enables interpretable models that link variants to disease via specific

tissues and/or cell types.
Introduction

Characterizing non-coding genetic variants in the human

genome is essential for making progress toward better un-

derstanding the genetic components of disease, as �90%

of disease-associated variants discovered by genome-wide

association studies (GWASs) are located in non-protein-

coding regions.1 Furthermore, whole-genome sequencing

discovers disease-associated variants genome-wide2,3 and

is increasingly becoming an assay of choice. Therefore, ap-

proaches for characterizing and prioritizing non-coding

variants can be expected to play an increasingly important

role, especially when assessing discovered variants in the

context of functional follow-up experimental studies.

Efforts to computationally characterize and better un-

derstand non-coding variants take advantage of sequence,

functional genomics, comparative genomics, and epige-

nomics data,4–6 and more. These data are combined and

used to train and develop supervised and/or unsupervised

models that attempt to quantify a variant’s impact.7 We

find it conceptually useful to distinguish between variant

scores that model overall impact (that is on the level

of the whole organism, organism-level scores) and scores

that quantify impact in a specific context, like a tissue
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or a cell type (i.e., tissue-level scores). Examples of

methods for obtaining organism-level scores are CADD,8

Eigen,9 and LINSIGHT,10 while scores from methods like

GenoSkyline,11 Fitcons2,12 and FUN-LDA13 are tissue spe-

cific. In addition, GenoNet14 is an approach that leverage

existing disease-specific scores together with genome-

wide functional annotation to better predict organism-

level and tissue-specific variant impact. RegBase,15 on the

other hand, combines existing scores for broad categories

like pathogenic, cancer-driver, or regulatory variants.

Often, interest in a set of variants is from the perspective

of studying a specific disease. In that case, organism-level

scores are likely to be overly general. That is, a variant’s

impact might be considered high because it disrupts the

functional role of a sequence element. However, that func-

tional role may be unrelated to the disease of interest. In

one study, for instance, organism-level scores like CADD

and DANN were unable to discover an enrichment signal

for brain-related traits, while context-specific variant

scores focusing on relevant tissues were successful.16 This

demonstrates that tissue-specific scores can address the

issue of disease specificity to some extent. Therefore, ap-

proaches like TSEA-db17 and efforts like EpiMap18 aim to

identify disease-relevant tissues. Despite these approaches
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and their successes, it remains the case that aspects of dis-

ease-relevant tissues typically remain unknown, and often,

more than one tissue is implicated with a specific trait

(termed ‘‘multifactorial’’ and ‘‘polyfactorial’’ traits).18 This

suggests the use of disease-specific variant scores that char-

acterize variants in the context of a specific disease pheno-

type of interest.

Computational methods for disease-specific variant pri-

oritization do exist. Some approaches are geared toward

one disease (e.g., congenital heart disease,19 amyotrophic

lateral sclerosis20) or toward a specific class of diseases

(e.g., autoimmune diseases21). This focus prevents them

from being readily adapted to other disease types.

Others, like DIVAN,22 PINES,23 and ARVIN,24 cover a

broader range of disease types. Of these, ARVIN requires

a priori knowledge of disease-relevant tissues, whereas

DIVAN and PINES do not. PINES uses an enrichment-

based method to predict and up-weight disease-relevant

tissues/cell types, whereas DIVAN uses a more complex

machine learning algorithm. The PINES approach has

been evaluated on a relatively small set of traits, while

DIVAN’s more complex model renders understanding

the relationship between different tissues and diseases

difficult.

In this work, we derive disease-specific variant scores

by combining published tissue-specific scores (Figure 1).

We use a carefully regularized logistic regression approach

to derive data-driven disease-specific combinationweights,

which allow us to better associate variants with disease. In

addition, they enable us to quantify a similarity between

different disease phenotypes. Using the NHGRI-EBI

GWAS Catalog,1 we compiled a benchmark dataset con-

taining about 25,000 phenotype-associated non-protein-

coding single-nucleotide variants (SNVs) across 111 disease

phenotypes (together with matched random controls). We

then demonstrate that using disease-specific combination

weights outperforms conventional organism-level ap-

proaches, that our interpretable model has competitive

performance, and that it enables a disease similarity mea-

sure that captures information complementary to estab-

lished measures like genetic correlation.
Results

Non-coding GWAS variants associated with disease

phenotypes and matched controls

In order to study variant prioritization methods, we

created a dataset of ‘‘positive’’ (i.e., disease-associated) non-

coding variants, matched with a random set of ‘‘negative’’

or ‘‘control’’ variants. This setup allowed us to quantita-

tively assess prioritization methods based on their perfor-

mance in discriminating positive from control variants.

Disease-associated non-coding SNVs

We used a subset of SNVs reported in the EBI/NIH GWAS

Catalog1 to compile an inventory of disease-associated

non-coding variants. Specifically, we focused on reported
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variants that (1) do not overlap protein-coding sequence

(see materials and methods) and (2) are associated with a

disease phenotype as noted in the Experimental Factor

Ontology (EFO) trait description, which is provided within

the catalog. We define disease phenotypes as descendants

of the EFO term ‘‘disease’’ (EFO: 0000408). Focusing on

disease terms with at least 100 annotated SNVs resulted

in 26,080 associations involving 20,656 SNVs and 67 dis-

ease phenotypes. The EFO provides parent-child relations

between disease terms (parent ¼ more general, child ¼
more specific), and propagating SNVs from child terms to

parent terms increased the number of disease phenotypes

with at least 100 SNVs, resulting in 77,028 associations be-

tween 25,516 SNVs and 111 diseases. We find that most of

the SNVs we recover are located in intronic (60.5%) and in-

tergenic (25.8%) sequences (Figure 2A) and that a majority

of SNVs are directly annotated to a single disease pheno-

type (Figure 2B). After propagating annotated SNVs from

child to parent terms, SNV-to-disease annotations become

predominantly many:many (Figure 2B). Data SD1 lists dis-

ease terms and corresponding numbers of disease-associ-

ated SNVs.

Control SNVs

For each disease-associated SNV, we selected �10 matched

control SNVs using a re-implementation of the SNPsnap

approach25 while avoiding duplicate control SNVs across

the overall dataset (see materials and methods). This

yielded 255,137 control SNVs (for some disease-associated

SNVs, we could not retrieve the full ten control SNVs).

With these results, we have access to data for 111 disease

terms, containing disease-associated SNVs together with

matched controls. Data SD2 and SD3 contain information

about all disease and control SNVs used in this study,

respectively.

Disease-specific scores improve non-coding variant

prioritization

Before we describe our approach for disease-specific

variant scoring, we evaluated the performance of existing

organism-level scores on our dataset in disease-specific

non-coding variant prioritization with organism-level

variant scores is only moderately successful. We then detail

our approach in disease-specific aggregation weights for

tissue-specific variant scores and DHS scoring outperforms

other scores, before we show that it outperforms current

organism-level scores in DHS tissue-weighted scoring

outperforms organism-level variant scores. Our overall

approach is summarized in Figure 1.

Disease-specific non-coding variant prioritization with or-

ganism-level variant scores is only moderately successful

We assessed how well current commonly used organism-

level variant scores are able to prioritize disease-

associated vs. control SNVs for the 111 disease terms we

studied. Figure 3 summarizes the results, where boxplots

of two performance measures (area under the receiver

operator characteristic curve [AUROC] and average

precision [¼ area under the precision-recall curve]) are



Figure 1. Summary of our approach
Variant annotations from the GWAS Cata-
log were augmented with disease-specific
control variants using SNPsnap. For each
disease, a logistic regression model relates
disease-variant association to tissue-spe-
cific variant scores. Results are disease-spe-
cific variant scores and disease-specific tis-
sue aggregation weights that can serve as
input for further analyses, like the calcula-
tion of disease-disease similarities.
shown for CADD,8 Eigen,9 GenoCanyon,26 GWAVA,27 and

LINSIGHT10 scores. We find that organism-level scores,

while improving upon random guessing, are only moder-

ately successful in correctly prioritizing disease-associated

non-coding variants. Comparing variant scores with one

another, we find that relative performance differences

appear overall robust with respect to the metric employed

(AUROC vs. average precision). It is qualitatively visible

that CADD performs less favorably than other methods

but also that there are differences between them.We there-

fore compared performance between different scores in

more detail.

We studied the performance of different scores at two

levels of resolution: in aggregate across all disease terms

and for each disease term separately. For both approaches,

we used Wilcoxon signed-rank tests to decide whether one

score significantly outperforms another score (¼ significant

p value) or whether performance is tied (¼non-significant p

value); see the materials and methods section. The results

are summarized in Table 1. We find that GenoCanyon has

better performance compared with other variant scores, fol-

lowed by LINSIGHT, GWAVA, and Eigen, while CADD is

consistently outperformed by the other methods. Perfor-

mance differences between LINSIGHT, GWAVA, and Eigen

are not significant when aggregating across disease terms

(last three columns in Table 1); however, when counting in-

dividual terms, LINSIGHT has the most wins and fewest los-

ses, while Eigen has themost losses and fewest wins, leading

to the ordering displayed in Table 1. Data SD4 and SD5

contain results for all comparisons. Overall, these quantita-

tive results are in line with the visual impression from

Figure 3. Next, we investigated if the performance of organ-

ism-level variant scores could be improved by using tissue-

specific scoring approaches.

Disease-specific aggregation weights for tissue-specific

variant scores

We studied three tissue-specific scores for variant prioritiza-

tion to explore if their usage can improve the performance
Human Genetics and Geno
of organism-level scores. Specifically,

we used Genoskyline11 and Fit-

cons212 as scores designed to priori-

tize variants, and we also evaluated

DNase I hypersensitivity (DHS) pro-

files from the ENCODE project.6 All

of these scores are available for con-
texts5 spanning a diverse set of cell and tissue types,

including heart, brain, immune cells, and more.

For each tissue-specific score, we assess two approaches

to prioritize variants. First, as a baseline approach, we

aggregate scores across tissues in a disease-agnostic

way. That is, for a specific variant, we average scores at

the variant position across all tissues (termed tissue-

mean), essentially producing an organism-level type

score, independent of the disease term under consider-

ation. Second, we aggregate scores across tissues in a dis-

ease-specific way. Briefly, we train a regularized logistic

regression model for each disease term that learns dis-

ease-specific tissue aggregation weights. In a nested

cross-validation setup, learned weights are then applied

to held-out variants, allowing for a fair performance

assessment of this approach (termed tissue-weighted);

see the materials and methods section. Figure 4 summa-

rizes our findings.

In Figure 3A, we show the tissue-mean performance

(measured by average precision) for the three scores we

study on the left and tissue-weighted performance on the

right. For all three scores, tissue-weighted significantly

outperforms tissue-mean (Wilcoxon signed-ranks test,

p < 0.0001). Figure 4B shows tissue-mean vs. tissue-

weighted comparisons for each score, and we see that in

almost all disease terms, tissue-weighted outperforms tis-

sue-mean. See Data SD6 and SD7 for tissue-mean vs. tis-

sue-weighted performances for each disease term and for

aggregated performances across all disease terms. The

improvement remains evident if we limit disease-associ-

ated SNVs to one variant per linkage disequilibrium (LD)

block and also when we ensure that the SNVs in the

training and test datasets are not on the same chromosome

(see Figures S17–S20 and the supplemental information for

more details).

While the performance gain for tissue-weighted is

broadly consistent across diseases, for some it is

more pronounced than for others. To illustrate this
mics Advances 5, 100310, July 18, 2024 3



Figure 2. Disease-associated non-coding
SNVs
(A) Genomic context of non-coding SNVs
used in this study.
(B) Percentage of the SNVs used that are
annotated to 1, 2–3, 4–5, or more than 5
disease phenotypes before and after propa-
gating SNV-phenotype associations ac-
cording to EFO parent-child annotations.
Genomic context annotation is adapted
from the CONTEXT column from the
GWAS Catalog, where we combine splice
donor, splice region, and splice acceptor
variants into splice variants and combine
transcription factor binding variants and
regulatory regions variants into regulatory
region variants.
observation, we selected four disease terms with a high

performance gain, four terms with a medium gain,

and four terms where we observed the least gain

(best improvement, ranking 1–4; middle improvement,

ranking 20–23; least improvement, ranking 108–111).

Figure 5 shows our findings, where variability in tissue-

weighted performance induced by varying train-test-

fold splits during cross-validation is also displayed. We

see that for celiac disease (EFO: 0001060), systemic

scleroderma (EFO: 0000717), chronic lymphocytic leuke-

mia (EFO: 0000095), and sclerosing cholangitis (EFO:

0004268), performance is consistently improved for

all three tissue-weighted scores, while for retinopathy

(EFO: 0003839), endometriosis (EFO: 0001065), diabetic

nephropathy (EFO: 0000401), and HIV-1 infection (EFO:

0000180), we find no improvement. We also note that

disease terms with a pronounced improvement appear

to have a better baseline (i.e., tissue-mean) performance

than disease terms where we find little or no benefit of

the tissue-weighted approach. The improvement for dis-

eases shown in Figure 5 is largest for DHS, but, consistent

with Figure 4, we see improvement for Fitcons2 and

GenoSkyline as well.
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DHS scoring outperforms other scores

Having used three tissue-specific scores to derive disease-

specific variant scores, we assessed their relative perfor-

mance in this context. To quantify relative performance,

we proceed similarly to organism-level scores. Focusing

on pairwise comparisons, we find that disease-specific

scores derived from DHS scores outperform GenoSkyline

and Fitcons2 for most disease terms and on average (see Ta-

ble 2). This can also be observed in Figures 4 and 5, which

often show higher average precision values for DHS than

for the other two scores. Notably, the baseline (i.e., tis-

sue-mean) performance of DHS does not appear signifi-

cantly better than that of Genoskyline (Figure 4). Data

SD8 and SD9 contain details for comparisons between

DHS, Fitcons2, and GenoSkyline for all disease terms.

Next, we explored whether disease-specific tissue weights

outperform organism-level scores.

DHS tissue-weighted scoring outperforms organism-level

variant scores

To compare the DHS tissue-weighted score with organism-

level scores, we directly contrasted their performance.

Similar to before, Table 3 summarizes DHS ‘‘wins’’ (¼ signif-

icantly better performance of DHS tissue-weighted,
haracteristic Curve

anyon GWAVA LINSIGHT

Figure 3. Organism-level variant scores
are moderately successful in prioritizing
noncoding disease-associated variants
Different organism-level variant prioritiza-
tion scores are shown on the x axis, and
the y axis displays performance in terms
of average precision (area under the preci-
sion recall curve, left) and area under
the receiver-operator curve (right). Each
point represents a specific disease term
from the experimental factor ontology.
Horizontal lines spanning datasets show
expectations under random guessing.



Table 1. Relative performance of organism-level variant scores

Score/method

By disease term Aggregated

Wins Losses Ties Wins Losses Ties

GenoCanyon 307 106 31 4 0 0

LINSIGHT 281 146 17 1 1 2

GWAVA 221 196 27 1 1 2

eigen 219 201 24 1 1 2

CADD 24 403 17 0 4 0

Wins, losses, and ties refer to significantly better (or worse, or tied) performance across all possible pairings (see materials and methods). Columns 2-4 summarize
separate comparisons for each disease term (for each row, there are four other methods and 111 terms, i.e., 444 comparisons), while the last three columns repre-
sent the results of comparisons between scores aggregated across terms. Average precision was used as the performance metric, and Wilcoxon signed-rank tests
were used to determine wins and losses (p values equal or larger than 0.05 are reported as ties).
p % 0.05), losses, and ties, compared with five organism-

level variant scores, individually (i.e., per disease term)

and aggregated across disease terms. In addition, Table S4

summarizes pairwise comparisons between tissue-weighted

DHS and each organism-level score. We find that DHS tis-

sue-weighted outperforms all organism-level scores in

the aggregated analyses and that it outperforms all other

scores on the majority of disease terms (it only performs

significantly worse than any other score in 44 out of 550

comparisons).

GenoCanyon is the most competitive organism-level

score, where DHS is significantly better for 92 terms out

of 111 (�83%). Interestingly, LINSIGHT performs better

against DHS than GenoCanyon, which is the best overall

performing organism-level score (see Table S4). Data

SD10 contains detailed results for each comparison. We

also find that DHS outperforms organism-level scores

when aggregating over disease terms (also see Data SD11).

To illustrate the gain in performance, we selected four

example disease terms where disease-specific variant prior-

itization yielded high improvements, medium improve-

ments, comparable performance, and worse performance,

respectively. Selection was based on ranking differences be-

tween DHS and GenoCanyon: best improvement, ranks 1–

4; medium improvements, ranks 25–28; comparable per-

formance, ranks 64–67; and GenoCanyon better, ranks

108–111. The results are summarized in Figure 6, where

we find substantial improvements using tissue-weighted

scoring for systemic scleroderma (EFO: 0000717), celiac

disease (EFO: 0001060), sclerosing cholangitis (EFO:

0004268), and multiple sclerosis (EFO: 0003885), for

which we have already noticed substantial improvement

of DHS tissue-weighted over DHS tissue-mean. Disease

terms where GenoCanyon performs better include venous

thromboembolism (EFO: 0004286), diverticular disease

(EFO: 0009959), non-small cell lung carcinoma (EFO:

0003060), and lung adenocarcinoma (EFO: 0000571).

To make DHS tissue-weighted scores available, we gener-

ated pre-computed scores for 111 diseases at every base

across the genome (for chromosomes 1–22, available at

https://doi.org/10.7910/DVN/AUAJ7K). Scores were calcu-

lated at 25 bp resolution using the hg19 assembly, in the
Hu
same resolution and on the same assembly as the DHS

scores.

DHS scoring performs well compared with DIVAN

Here, we compare the performance of tissue-weighted DHS

scoring with DIVAN,22 a disease-specific variant score for

45 diseases. DIVAN is based on a more complicated feature

selection and ensemble learning framework, and it uses a

variety of other functional genomics features in addition

to DHS. To compare our method with DIVAN, we mapped

EFO disease terms to MeSHs and use MeSH terms in this

section (see Data SD12). Because DIVAN is used as a super-

vised learning approach, and because the published model

was trained using GWAS SNVs, it was necessary to create

specific train and test datasets to ensure a meaningful com-

parison between tissue-weighted DHS and DIVAN.

Therefore, to assess the performance of both DIVAN and

DHS, we created a test set of disease-associated variants

(and their matched controls) that were published later

than 2016 (DIVAN’s publication date). That is, these vari-

ants are unlikely to have been a part of DIVAN’s training

data. We also created a training set for DHS tissue-weighted

containing only SNVs published prior to 2016. This re-

sulted in training data that (1) are distinct from the test

set and (2) draw on similar information that was available

for DIVAN’s training. Further on, we only selected disease

terms for this training/test data combination where at least

20 term-associated SNVs were present in the training data

and at least 50 SNVs were present in the test data. This

approach yielded 29 disease terms for this analysis. We

then re-trained tissue-weighted DHS on this training data

and compared it with DIVAN on the test data. In addition,

we added the organism-level GenoCanyon score as a

reference.

To assess performance, we performed all pairwise com-

parisons for each disease term and evaluated performance

based on average precision. Table 4 summarizes observa-

tions, where we find that DHS performs significantly

better than GenoCanyon and DIVAN in amajority of com-

parisons; however, there is a substantial number of com-

parisons (22 out of 58) where either GenoCanyon or

DIVAN outperforms DHS. Figure 7 further illustrates these
man Genetics and Genomics Advances 5, 100310, July 18, 2024 5
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Figure 4. Disease-specific tissue weights improve variant prioritization
Performance of three tissue-specific variant scores (DHS, Fitcons2, GenoSkyline) is used to prioritize non-coding disease-associated var-
iants for disease terms using two approaches: tissue-mean (i.e., disease agnostic, baseline) on the left side and tissue-weighted (i.e., dis-
ease specific) on the right side. p values were calculated using a Wilcoxon signed-rank test (A). Scatterplot of tissue-mean vs. tissue-
weighted performance (average precision) for each tissue-specific score; dashed line denotes the diagonal (B).
comparisons. In Figure 7A, we show the performance

across disease terms, grouped by the best-performing

method. We see that tissue-weighted DHS outperforms

DIVAN and GenoCanyon substantially on multiple
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sclerosis (MeSH: D009103), psoriasis (MeSH: D011565),

and inflammatory bowel disease (MeSH: D015212);

DIVAN outperforms GenoCanyon and DHS on

arthritis, rheumatoid (MeSH: D001172) and heart failure
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Figure 5. Improvement through disease-
specific tissue weights is consistent across
scores but varies with disease term
Shown is the performance of tissue-
weighted variant scores (colored points)
vs. tissue-mean (black asterisks) as a base-
line, for three tissue scores (rows) and
four diseases, stratified by improvement
observed: best improvement for the first
column, moderate improvement for the
middle column, and least improvement
for the right column. The x axes denote dis-
ease terms and the y axis average precision.
Different points for tissue-weighted scores
represent different data splits in the nested
cross-validation procedure.



Table 2. DHS outperforms other tissue-specific scores

Score/method

By disease term Aggregated

Wins Losses Ties Wins Losses Ties

DHS 180 22 20 2 0 0

Genoskyline 96 94 32 1 1 0

Fitcons2 19 179 24 0 2 0

Wins, losses, and ties refer to significantly better (or worse, or tied) performance across all possible score pairings (see materials and methods). Columns 2-4 sum-
marize separate comparisons for each disease term (for each row, there are two other methods and 111 terms, i.e., 222 comparisons), while the last three columns
represent the results of comparisons aggregated over disease terms. Average precision was used as the performance metric, and theWilcoxon signed-rank test was
used to determine wins and losses (p values equal or larger than 0.05 are reported as ties).
(MeSH: D006333); and GenoCanyon outperforms DHS

and DIVAN on stroke (MeSH: D020521) and Alzheimer

disease (MeSH: D000544). In Figures 7B–7D, we directly

summarize comparison results; we observe that the DHS

tissue-weighted score often has an advantage in terms

where prioritization efforts are overall more successful

(top right quadrants). Finding overall good performance

for our approach, we next more closely examined the dis-

ease-specific tissue aggregation weights we derive with our

approach.

Disease-specific tissue weights reflect biomedical

relevance

In addition toprioritizing SNPs, we can interpret the disease-

specific tissueweights that ourmodel learns in the context of

disease mechanisms. Specifically, large tissue weights impli-

cate tissues with a prominent role in associating SNVs with

a disease in our model; therefore, one may hypothesize

that such tissues or cell types have a function in the etiology

of that disease. To investigate this hypothesis, we analyzed

tissue weights of the top-performing models we derived,

where each model represents a different disease.

The results are summarized in Table 5; they include

the two top-performing models, systemic scleroderma

(rank 1) and sclerosing cholangitis (rank 2). In order to

report a diverse range of diseases, we next excluded any

diseases that are descendants of immune system disease

(EFO: 0000540) or lymphoma (EFO: 0000574). From the

remaining diseases, we identify the next three highest-

ranked models: colorectal adenoma (rank 15), atrial fibril-

lation (rank 20), and cutaneous melanoma (rank 21). For

each disease, we list the five tissues with the largest tissue

weights and their tissue group.

The tissues we associate with disease, overall, appear

reasonable and generally are in line with existing knowl-

edge about disease mechanisms. Systemic scleroderma is

an autoimmune disorder that can affect skin and internal

organs. We find that GM12878 lymphoblastoid cells (a

type of B cell) are among the highest-weighted tissues, as

were other types of B cells (primary B cells and B cell lym-

phoma, respectively). This is in line with previous studies

that have shown that B cells play a role in system sclero-

derma.28,29 Sclerosing cholangitis is an inflammatory condi-

tion that leads to scarring and narrowing of the bile ducts.30

We highlight various inflammation-related types of blood
Hu
cells, such as T cells and monocytes, which were previously

suggested to play a role in the disease.31 Colorectal adenoma

is a benign tumor that develops in the lining of the colon or

rectum. Our model identified rectal mucosa and stomach

mucosa as the most-highly weighted tissues, and the func-

tion of rectal mucosa in colorectal cancer has been previ-

ously studied.32 While the direct relationship between

other gastrointestinal tissues and the development of colo-

rectal adenomahas not been established, the association be-

tween gastrointestinal microbiome and colorectal ade-

nomas has been discovered.33 Regarding atrial fibrillation,

our approachhighlights fetal heart and lung tissues. In addi-

tion, we identified skeletal muscle cells. In the case of cuta-

neous melanoma, a type of skin cancer, our approach em-

phasizes foreskin melanocyte cells and a specific type of

T cell. Apart from these, we highlight cervical carcinoma

cell lines and endothelial primary cells.

Overall, we conclude that the tissue weights we derive

carry biomedically meaningful information and are able to

highlight tissue contexts thatmayplay a role indisease etiol-

ogy. To further explore this finding, weused a resource of the

epimap consortium,18 where disease-tissue associations are

reported that derived differently from the ones we obtained

in twokeyways: first, epimapuses their enhancerdefinitions

based on a much larger set of genome annotations. Second,

epimap’s enrichment test contrasts disease-associated SNP

enrichment in a specific tissue’s enhancer set compared to

all enhancers, whereas our method effectively compares

open chromatin harboring disease-associated SNPs vs. con-

trol SNPs tissue by tissue. Nevertheless, the results are sum-

marized in Table S7, and we find that out of the 25 tissues

we associate with disease terms, 14 have an estimated false

discovery rate of less than 4% in the epimap analysis as

well. Notably, a ground truth for these association is gener-

ally unknown, but we interpret the overlap in associations

as encouraging, while complementary associations are ex-

pected, given the differences in methodology. Based on

thisoverallfindingofmeaningfuldisease-tissueassociations,

we next further explored the use of tissue weights in disease

characterization.

Disease-term similarity based on DHS tissue-weighted

modeling reveals meaningful groups

Disease-specific tissue weights for aggregating DHS scores,

which are learned by our approach, can highlight tissues
man Genetics and Genomics Advances 5, 100310, July 18, 2024 7



Table 3. DHS outperforms organism-level variant scores

Score/method

By disease term Aggregated

Wins Losses Ties Wins Losses Ties

DHS 474 44 37 5 0 0

GenoCanyon 314 198 43 4 1 0

LINSIGHT 298 230 27 1 2 2

GWAVA 233 289 33 1 2 2

eigen 223 299 33 1 2 2

CADD 28 510 17 0 5 0

Wins, losses, and ties refer to significantly better (or worse, or tied) performance across all possible score pairings (see materials and methods). Columns 2-4 sum-
marize separate comparisons for each disease term (for each row, there are two other methods and 111 terms, i.e., 555 comparisons), while the last three columns
represent the results of comparisons aggregated over terms. Average precision was used as the performancemetric, and theWilcoxon signed-rank test was used to
determine wins and losses (p values equal or larger than 0.05 were reported as ties).
and cell types with a role in the disease (see previous sec-

tion). Therefore, we derived and explored a measure for

disease similarity based on these weights.

Disease similarities based on disease-specific tissue weights for

non-coding variant prioritization

In our DHS tissue-weighted approach, for each disease

term, DNA accessibility across the same set of tissue and

cell-type contexts is used to predict whether a certain

SNV is disease associated or not. This results in disease-spe-

cific tissue aggregation weights (that is, coefficients in our

logistic regression model) fbðiÞ ˛Rdgni¼1, where i is index-

ing disease terms, n is the number of disease terms studied,

and d denotes the number of tissues/cell types with

DHS scores. For our similarity measure between two dis-

eases, say i and j, we then use a version of the Pearson cor-

relation between bðiÞ and bðjÞ that takes uncertainty in the

estimated aggregation weights into account (see materials

and methods). That is, if an overlapping set of tissues/cell

types drive the prioritization of SNVs for two diseases,
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then the similarity is high; if different tissues are used,

then the similarity is low.

Using this approach, we calculated disease similarities

for the 111 disease terms we study. Resulting similarities

are visualized in Figure 8, where we show a similarity-based

two-dimensional uniform manifold approximation and

projection (UMAP) of disease terms. We observe that dis-

ease terms segregate into separate groups, with a coarse

grouping between immune-related diseases (bottom left

inlay, black) and others (bottom left inlay, gray). A

higher-resolution group structure was obtained by sub-

clustering, where we grouped disease terms into seven

groups (Figure 8). Clusters names are based on EFO disease

terms that include a large amount of cluster members as

child terms (see materials and methods and Figures S10–

S16); Table 6 lists disease terms per cluster. In addition to

the clear separation of immune-related diseases from

others, we also find a very homogeneous group consisting

of mental and behavioral disorders, containing terms like
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Table 4. DHS tissue-weighted disease-specific scoring outperforms DIVAN

Score Wins Losses Ties Winning percentage (%)

DHS 34 22 2 61

GenoCanyon 26 31 1 46

DIVAN 25 32 1 44

Across 29 disease terms, this table summarizes all pairwise comparison for DHS tissue-weighted, GenoCanyon, and DIVAN using a specifically created test dataset.
Wins, losses, and ties refer to significantly better (or worse, or tied) performance. Average precision was used as the performance metric, and the Wilcoxon signed-
rank test was used to determine wins and losses (p values equal or larger than 0.05 were ties). Winning percentage ¼ \#wins/(\#winsþ\#losses).
schizophrenia (EFO: 0000692) and anxiety disorder (EFO:

0006788), and a group of skin cancers. The remaining

three groups are more heterogeneous but with two of

them containing several terms related to cardiovascular

disease (EFO: 0000319) and digestive system disorders

(EFO: 1000218), respectively. By design, similar tissues in

each group drive SNP-disease associations, and we next

examined which tissues play a role in each of the clusters.

In order to find group-specific tissues, we examined

for each cluster the top five tissues that (1) contribute

most to disease association and (2) are cluster specific

(see materials and methods). The results are summa-

rized in Figure 9; we note that both disease groups

related to the immune system highlight blood tissues

(such as E043: primary T helper cells from peripheral

blood and E116: GM12878 lymphoblastoid cells; see

Data SD23 for all names of standard epigenomes),

with the group containing inflammatory bowel disease,

Crohn disease (CD), and ulcerative colitis (UC) also

containing rectum tissues (such as E101: rectal mucosa

donor 29). Brain tissues contribute to disease associa-

tions for mental and behavioral disorders, skin tissues

to skin cancer, and gastrointestinal/stomach tissue to

the cluster with digestive system diseases. We also

note that a clear association of specific tissues with a

disease group correlates with the better classification

performance of our model for SNP-disease association

(Figure 9; for example, see the immune and immune/

autoimmune clusters). We note, though, the corre-

sponding tissue associations are not equally compelling

for all clusters, as illustrated in the same figure. While

the clusters we derive resemble broader disease groups,

for each disease, a specific combination of tissues is

used to derive whether a variant might be associated,

and some tissues contribute to several clusters. For

instance, one blood cell type (E116: GM12878 lympho-

blastoid cells) contributes to both immune clusters but

also to diseases in the digestive/cancer, heterogeneous,

and skin cancer clusters. Another blood cell type

(E043: primary T helper cells from peripheral blood)

displays a similar pattern. Figure S9 shows the same

heatmap as Figure 9 but for all tissues.

Overall, these results suggest that our modeling

approach successfully identifies tissues with a role in dis-

ease etiology. Finally, we explore how our disease similar-

ities relate to genetic similarities as measured by genetic

correlation between diseases.
Hu
Model-based similarities are complementary to genetic corre-

lation

Here, we compare the disease-disease similarities we

derived (sm) with genetic correlations from the GWAS Atlas

(sg ), where genetic correlation measures shared genetic

causes between two traits.34 For 6,105 possible disease pairs

of the 111 diseases terms we study, estimates of genetic cor-

relation for 595 pairs were available from the GWAS Atlas

(see materials and methods). Overall, for these 595 disease

pairs, we observe only a weak (but statistically significant)

correlation between model similarities and genetic correla-

tions (r ¼ 0.32, p ¼ 2.4E�15), where the scatterplot is

shown in Figure 10A.

We also see that most disease pairs are not annotated

with substantial genetic correlations or with high model-

based similarities (90% of disease pairs have sm < 0.25

and sg < 0.2). Therefore, we explored three different re-

gimes: disease pairs where both similarity measures are

high (smR 0.25 and sgR 0.20), pairs with high genetic cor-

relations and low model similarity (sm < 0.25 and sg R

0.20), and vice versa (quadrants indicated in Figure 10A,

named quadrants B, C, and D). The top eight most extreme

examples from each regime are summarized in Table 7. In

the following, we discuss some examples in more detail.

Specifically, we explore two immune system diseases for

quadrant B, two mental or behavioral disorders for quad-

rant C, and one immune system disease and one mental

or behavioral disorder for quadrant D. We note that the

pairs we examine have no annotated parent-child relation-

ships in the EFO.

UC (EFO: 0000729) and CD (EFO: 0000384) have both

high genetic correlation (sg ¼ 0.53) and model similarity

(sm ¼ 0.84) (see Figure 10A). This suggests that they

share genetic causes and that the same tissues are informa-

tive for SNP-disease association. While shared genetic

causes for UC and CD have been pointed out (e.g., Yang

et al.35), our model for SNP-disease association allows us

to explore relevant tissue contexts. In Figure 10B, we

show a scatterplot of tissue weights for both diseases,

where color indicates the importance of each tissue to

model similarity (see materials and methods). We observe

that open chromatin in blood (E116: GM12878 lympho-

blastoid cells; E124: monocytes-CD14þ RO01746 primary

cells; and E041: primary T helper cells PMA-I stimulated)

and rectum (E102: rectal mucosa donor 31) is positively

associated with SNP-disease association in both diseases;

this is consistent with a previous study where blood cell
man Genetics and Genomics Advances 5, 100310, July 18, 2024 9



Figure 7. DHS tissue-weighted scoring outperforms DIVAN
Performance of DIVAN, GenoCanyon, and DHS tissue-weighted across a test set, with disease terms grouped by the best-performing
method. Vertical stripe indicates the minimum and maximum performance of 30 bootstrap samples (A). Performance scatterplots of
GenoCanyon vs. DIVAN performance (B), GenoCanyon vs. DHS-weighted (C), and DIVAN vs. DHS-weighted performance (D). Average
precisionwas used for these plots; dashed lines denote equal performance. Percentages denote the fraction of points above and below the
diagonal, respectively.
types were found to be relevant in many autoimmune dis-

eases, including UC and CD.36 In addition, symptoms or

complications in the rectum are also observed in UC and

CD.37 Interestingly, open chromatin in gastrointestinal-in-

testine (E085: fetal intestine small) is negatively associated

with SNP-disease association, along with other intestine

tissues (E084: fetal intestine large and E109: small intes-

tine, with the 61th and 86th smallest tissue weights,

respectively, among 127 contexts). This indicates that the

fetal intestine or small intestine might be less involved in

UC and CD etiology compared to their juvenile and adult

counterparts.

Autism spectrum disorder (ASD; EFO: 0003756) and

anorexia nervosa (AN; EFO: 0004215) are an example

where we observe a low genetic correlation (sg ¼ �0.05)

and amoderate highmodel similarity (sm¼ 0.34); a scatter-

plot of their tissue weights is shown in Figure 10C. Note

that we did not choose one of the highlighted pairs in Ta-

ble 7 for this quadrant because we already discussed an im-

mune-system-related disease pair. We observe that both

diseasemodels give heart and brain tissue (E083: fetal heart

and E081: fetal brain male) high tissue weights. This is

consistent with the observation of brain abnormalities in

ASD and AN.38,39 While the presence of the fetal heart is

less intuitive, we note that children with abnormal heart

development are more likely to develop ASD, suggesting
10 Human Genetics and Genomics Advances 5, 100310, July 18, 202
a connection between the disease and the fetal heart.40

We also note that while the genetic correlation between

ASD and AN is low, a link between the two diseases on

the phenotypic level is being suggested41,42; the tissue

context we identified could provide information about

shared molecular aspects of disease etiology as well.

For obsessive-compulsive disorder (EFO: 0004242) and ce-

liac disease (EFO: 0001060), we observe low model similar-

ities (sm ¼ �0.26) and moderately high genetic correlation

(sg ¼ 0.36); Figure 10D shows the scatterplot of tissue

weights. Several studies have shown that nervous system

disease and immune-related diseases have shared genetic

backgrounds.43,44 However, in contrast to the other two ex-

amples, there is little relation between tissue weights in

these two diseases. Blood cell types are highlighted in celiac

disease, while brain and fetal heart tissues are highlighted in

obsessive-compulsive disorder. For celiac disease, the top six

tissue contexts are blood cells, including different types

of T cells (E041: primary T helper cells PMA-I stimulated;

E043: primary T helper cells from peripheral blood; and

E034: primary T cells from peripheral blood) and lympho-

blasts (E116: GM12878 lymphoblastoid cells), which is

consistent with findings that alterations in T cells and lym-

phoblasts can lead to celiac disease.45,46

Overall, these examples illustrate that the disease

similarities we derive are complementary to genetic
4



Table 5. Top-ranked tissues for five diseases

Rank ID Tissue name Group

Systemic scleroderma

1 E116 GM12878 lymphoblastoid cells blood

2 E032 primary B cells from peripheral blood blood

3 E041 primary T helper cells PMA-I stimulated blood

4 E123 K562 leukemia cells blood

5 E030 primary neutrophils from peripheral blood blood

Sclerosing cholangitis

1 E116 GM12878 lymphoblastoid cells blood

2 E061 foreskin melanocyte primary cells skin03 skin

3 E102 rectal mucosa donor 31 gi_rectum

4 E041 primary T helper cells PMA-I stimulated blood

5 E029 primary monocytes from peripheral blood blood

Colorectal adenoma

1 E102 rectal mucosa donor 31 gi_rectum

2 E110 stomach mucosa gi_stomach

3 E057 foreskin keratinocyte primary cells skin02 skin

4 E101 rectal mucosa donor 29 gi_rectum

5 E028 breast variant human mammary epithelial
cells (vHMECs)

breast

Atrial fibrillation

1 E083 fetal heart heart

2 E108 skeletal muscle female muscle

3 E107 skeletal muscle male muscle

4 E088 fetal lung lung

5 E120 HSMM skeletal muscle myoblast cells muscle

Cutaneous melanoma

1 E061 foreskin melanocyte primary cells skin03 skin

2 E059 foreskin melanocyte primary cells skin01 skin

3 E117 HeLa-S3 cervical carcinoma cell line cervix

4 E041 primary T helper cells PMA-I stimulated blood

5 E122 HUVEC umbilical vein endothelial primary
cells

vascular

This shows the top-five tissues with the largest tissue weights in the correspondingmodel we derive, for five diseases. The first column is the tissue rank, the second
the tissue’s roadmap ID, the third the tissue name, the fourth the tissue group.
correlation. In addition, tissue contexts highlighted by our

tissue weights allow for biomedical interpretations of

observed similarities (i.e., which are the relevant tissue

contexts) and can be used to generate molecular hypothe-

ses about disease etiology.

In summary, our results show that disease-specific

variant prioritization performs well for non-coding GWAS

variants, compared with organism-level approaches. We

also demonstrate that disease-specific tissue weights are

biomedically meaningful and can be used to generate hy-
Hum
potheses about disease mechanism. Therefore, we believe

that this type of variant characterization is a useful tool

for researchers studying the molecular and genetic causes

of disease.
Discussion

Most variant scores prioritize non-coding variants either

at the level of the whole organism (e.g., CADD,8
an Genetics and Genomics Advances 5, 100310, July 18, 2024 11



Figure 8. Similarity-based two-dimensional projection visualizes 111 diseases
Two dominant disease groups emerge in this visualization (immune system-related disease terms [black] and others [gray], in the inlay).
Hierarchical clustering was used to group diseases into seven clusters, with colors indicating broad disease types (see Table 6 for details).
GenoCanyon26) or provide tissue-specific scores (e.g.,

GenoSkyline,11 Fitcons212). Here, we present a straightfor-

ward strategy to combine tissue-specific variant scores

in a disease-specific manner. We show that for common

genetic variants in the GWAS Catalog,1 our approach

leads to a better performance than organism-level or tissue-

specific scores (see Figure 6). Pre-computed disease-specific

prioritization scores are available at https://doi.org/10.

7910/DVN/AUAJ7K. Comparing different variant prioritiza-

tionmethods, we note that we use area under the precision-

recall curveasanevaluationmetric andthat theperformance

of allmethods ismodest.We believe that is because our anal-

ysis (1) focuses explicitly on non-coding variants, (2) strat-

ifies SNVs by disease phenotype, and (3) utilizes unbiased

matching of control SNVs (SNPsnap matching; see control

variants). Each of these points affects the SNV sets we use

for our analysis and therefore the performance metrics we

report. For transparency, we provide all disease-associated

variants we use (with matched negatives) in Data SD1. As a

more general point, we also note that associations reported

in the GWAS Catalog contain causal as well as non-causal

SNPs,whichwill also contribute to sub-optimalperformance

measures of all the variant scores we assess.

We included a comparison with the DIVAN method

in our evaluation, which also includes comparing

GenoCanyon with DIVAN. Part of this comparison is anal-

ogous to results reported in Chen et al.22; however, the
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performances we observed do not agree perfectly, as

detailed in Data SD15. Broadly, looking at overlapping/

matching disease terms, our results appear more favorable

for GenoCanyon. These differences are likely due to

different test sets used in the two evaluations (i.e., the

GWAS Catalog [this study] vs. Genome-Wide Repository

of Associations Between SNPs and Phenotypes).

We also note that there is other research associating var-

iants with disease terms in a similar setting, notably

PINES23 and LSMM.47 We did not compare directly with

PINES because no pre-computed scores are available; also,

we note that while the performance reported in this publi-

cation in terms of the AUROC is higher than our results, a

less stringent un-matched test set of random/control vari-

ants was used in these analyses. For LSMM,we note that we

leverage variants associated with EFO disease terms across

studies, while LSMM uses summary statistics on a per-

study basis. Using aggregate data from different studies al-

lows our approach to consider parent-child relationships

of the experimental factor ontology using variant aggrega-

tion (see disease-specific non-coding variant prioritization

with organism-level variant scores is only moderately

successful).

We demonstrate that our approach can be used to calcu-

late similarities between disease terms (see disease similar-

ities based on disease-specific tissue weights for non-cod-

ing variant prioritization). Since this similarity measure is
4
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Table 6. Disease groups based on DHS tissue-weights

heterogenous digest/cancer immune cardiovascular/others

adolescent idiopathic scoliosis autoimmune thyroid disease acute lymphoblastic leukemia alzheimer’s disease
age-related macular degeneration amhtsatesnotludaamonicractsaerb atherosclerosis

alcohol dependence cancer allergic rhinitis atrial fibrillation
amyotrophic lateral sclerosis cardiovascular disease allergy cardiac arrhythmia
chronic obstructive pulmonary disease esaesidyendikcinorhcamhtsacipotaamonedalatceroloc

dental caries colorectal cancer celiac disease diverticular disease
diabetic nephropathy coronary artery disease childhood onset asthma glaucoma

drug dependence diabetes mellitus chronic lymphocytic leukemia heart failure
endometriosis digestive system carcinoma cirrhosis of liver metabolic syndrome

epilepsy digestive system disease hypothyroidism migraine disorder
esaesidmetsysevitcudorperelameftuog juvenile idiopathic arthritis osteoarthritis

hiv infection hypertension lymphoid leukemia ovarian carcinoma
hiv-1 infection multiple myeloma esaesids’nosnikrapamohpmyl

lung adenocarcinoma neurotic disorder neoplasm of mature b-cells peripheral arterial disease
lung carcinoma pancreatic carcinoma non-hodgkins lymphoma retinopathy

neuropathy prostate carcinoma systemic lupus erythematosus stroke
non-alcoholic fatty liver disease respiratory system disease systemic scleroderma uterine fibroid
non-small cell lung carcinoma squamous cell carcinoma.

obesity type i diabetes mellitus
periodontitis type ii diabetes mellitus

peripheral neuropathy
scoliosis

squamous cell lung carcinoma
venous thromboembolism

immune/autoimmune mental dnegelrecnacniks

ankylosing spondylitis anorexia nervosa cutaneous melanoma digestive system disease
asthma anxiety disorder keratinocyte carcinoma immune system disease

autoimmune disease attention deficit hyperactivity disorder melanoma autoimmune disease
crohn’s disease autism spectrum disorder non-melanoma skin carcinoma cardiovascular

hypersensitivity reaction disease bipolar disorder mental or behavioural disorder
immune system disease eating disorder skin cancer

inflammatory bowel disease mental or behavioural disorder cancer
kidney disease mood disorder

redrosidtnemevomesaesidrevil
multiple sclerosis obsessive-compulsive disorder

psoriasis psychosis
rheumatoid arthritis schizophrenia

sclerosing cholangitis tourette syndrome
skin disease unipolar depression

ulcerative colitis

For each disease group, disease terms are shown. The colored squares denote the disease groups in the EFO ontology.
derived from non-coding SNVs associated with disease,

one could expect it is largely congruent with genetic corre-

lation between disease traits. However, that is not the case

(see Figure 10), most likely because we focus on a small sub-

set of disease-associated SNVs reported in the GWAS Cata-

log. For example, obsessive-compulsive disorder and celiac

disease have a high genetic correlation (sg ¼ 0.36) but do

not share non-coding SNPs in the GWAS Catalog (and

low model similarity, sm ¼ �0.26); on the other hand,

ASD and AN have a low genetic correlation (sg ¼ �0.05)

but share a number of significant SNPs in the GWAS Cata-

log (and relative high model similarity, sm ¼ 0.34). In addi-

tion, the interpretation of model similarity between dis-

ease terms is different from genetic correlation; high

model similarity implies that disease-associated SNVs

reside in DNA-accessible regions in an overlapping set of

tissues, but the identity of individual SNVs (and whether

they overlap) is inconsequential. For example, asthma

and rheumatoid arthritis (RA) have only 15 shared SNPs

(out of 732 and 1,283 SNPs in RA and asthma, respectively)

but exhibit high model similarity (sm ¼ 0.53). This shows

that model similarity between two diseases can involve
Hum
similar tissues even if they do not share a genetic back-

ground. Further on, we note that estimates of genetic cor-

relation also may depend on the study used. For example,

systemic lupus erythematosus (SLE) has a negative genetic

correlation (sg ¼ �0.47) with RA (and other inflammatory

diseases) when using the SLE summary statistics from Julia

et al.48 (as retrieved from the GWAS Atlas34), whereas

another study (Lu et al.49) found SLE to have a positive ge-

netic correlation (sg ¼ 0.41) with RA when using the SLE

summary statistics from Bentham et al.50

We note that in our analyses, we used the EFO ontology

to aggregate variants annotated in the NIH/EBI GWAS Cat-

alog. That is, for each disease term, directly annotated var-

iants were used, and, in addition, variants annotated to

descendant terms in the ontology were also included.

This approach allowed us to compile a more exhaustive

set of variants per term. However, some amount of caution

should be exercised when using disease models with

more general terms, such as ‘‘cardiovascular disease,’’ for

example, as they may encompass heterogeneous diseases.

Our approach is expected to improve asmore variants are

associated with disease and as disease associations get more
an Genetics and Genomics Advances 5, 100310, July 18, 2024 13
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Figure 9. Heatmap of top-five tissue-weights for 111 diseases
Regularized model coefficients (i.e., tissue weights) of five disease-cluster-specific tissues (columns) are shown for 111 diseases (rows).
Coefficients are scaled by disease, and rows are grouped into sets of cluster-specific tissues (see materials and methods section). Bottom
annotation shows tissue names of cluster-specific tissues (names are shown in the format of ‘‘tissue name’’ – ‘‘tissue group’’; annotation
on the left side shows disease cluster, and annotation on the right side shows model performance in terms of AUPRC.
refined. In addition, increasing amounts of epigenomics

data, such as epimap18 and ENCODE5,6 could be incorpo-

rated, and theyhave the potential to improve thedisease as-

sociations we learn. Further on, recent studies have shown

benefits of including functional annotations in rare variant

association analyses.51,52 In this context, our DHS-derived

scores can be included as data-driven disease-specific com-

binations of functional genome annotations and included

in this type of approach. It is future work to assess if this

could be an approach to bring GWAS data and functional

annotations to bear in rare variant analysis.

In summary, we have provided a straightforward

method to leverage tissue-specific variant scores for dis-

ease-specific variant prioritization. We show that this

approach performs well compared with current methods,

and we show that the resulting association models are

interpretable and lead to useful characterization of disease

terms. Overall, our contributions are useful for the

following two reasons: conceptually, because they high-

light the value of disease-specific variant prioritization,

and in addition, because we provide pre-computed priori-

tization scores for 111 disease terms that researchers can

use in practice to interpret their variant data.
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Materials and methods

Data sources and processing
Disease-associated variants

Disease-associated non-coding SNVs were retrieved from the

NHGRI-EBI Catalog of human GWAS database (GWAS Catalog,

v.2020-12-02, downloaded from https://www.ebi.ac.uk/gwas/

docs/file-downloads). These data contained 122,396 unique

non-coding SNPs spanning 2,782 phenotypes, where non-coding

was defined as variants not overlapping with a protein-coding

sequence (GENCODEv.36); we also excluded variants annotated

as protein-coding sequence variants (e.g., missense variants,

frameshift variants) as an SNP’s ‘‘functional class’’ in the GWAS

Catalog. Further, variants in the GWAS Catalog are annotated

with phenotypes using the EFO (https://www.ebi.ac.uk/efo).53

We focused on variants with phenotype terms annotated in the

disease domain of the EFO (i.e., all terms/traits/phenotypes we

consider are descendants of the term ‘‘disease’’ [EFO: 0000408,

EFO v.3.24.0, accessed November 17, 2020]). Further on, SNPs

in the human leukocyte antigen region and SNPs with a minor

allele frequency (MAF) less than 1% in the European population

as reported by the International Genome Sample Resource were

excluded (as they cannot be matched to control SNPs with the

SNPsnap approach; see below). Out of 31,103 SNVs, a total of

5,225 SNVs were removed. Finally, in our analyses, we restricted
4
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Figure 10. Genetic correlation and model similarity
(A) Genetic correlation vs. model similarity for 595 disease pairs. Each point is a disease pair, where the x axis denotes the genetic cor-
relation and y axis is the disease model similarity. For three quadrants, we highlight disease pairs, denoted by B, C, and D.
(B–D) Scatterplot of tissue coefficients in three example disease pairs, where (B) shows Crohn disease vs. inflammatory bowel disease,
(C) shows anorexia nervosa vs. autism spectrum disorder, and (D) shows celiac disease vs. obsessive-compulsive disorder. Lines denote
a weighted linear regression line underlying our disease similarities. Color codes for the weight for each tissue when conducting
weighted regression analysis.
ourselves to phenotypes with at least 100 annotated non-coding

SNPs. Data SD1 and SD2 contain the 111 phenotypes and 77,028

phenotype-associated SNPs we used in this study. We also group-

ed SNPs in LD blocks (SNPsnap, r2 R 0.5) and identify SNPs with

the minimum p value per block (‘‘representative SNP’’); we pro-

vide this information, which we use in some of the analyses

described below, in Data SD2.

Control variants

For each disease-associated SNP, we generated matched con-

trol non-coding variants with MAF R 1% using four different

strategies, where the non-coding is again defined discussed

above (disease-associated variants). The four strategies are as

follows:

d Random: for each disease-associated SNP, we selected

ten SNPs from common non-coding variants in 1000G

(European, EUR) at random (i.e., equal probability for all

SNPs) as controls.

d Transcription start site (TSS) matching: we processed com-

mon non-coding SNVs and selected a subset of these vari-
Human
ants as controls, where the distribution of distances to

the nearest protein-coding gene’s TSS are matched be-

tween control set and disease-associated SNPs (similar to

GWAVA27). Specifically, we sorted all common non-coding

SNPs by the distance to the nearest TSS and divided them

into 50 bins, where each bin contains the same number of

SNVs. Then, for each disease-associated SNP, we randomly

selected ten control SNPs from the bin containing the dis-

ease-associated SNP’s distance to the nearest gene.

d SNPsnap matching: using SNPsnap,25 we matched control

SNPs to disease-associated variants in terms of MAF, gene

density (distance cutoff ld0.8), distance to the nearest gene

TSS, and number of SNPs in LD. Our parameters for

maximum allowable deviation were 5%, 50%, 20%, and

50%, respectively. We randomly selected ten control SNPs

per disease-associated SNP form SNPsnap’s results, and we

ensured that there were no duplicated control SNPs for

different disease-associated SNPs. If there were less than 10

control SNPs returned by SNPsnap, then we kept all of the

control SNPs. If no control SNPs were matched, then we
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Table 7. Example disease pairs of genetic correlation and model similarities

Disease 1 Disease 2 sg sm Quadrant

Inflammatory bowel disease ulcerative colitis 1.00 0.88 B

Diabetes mellitus type 2 diabetes mellitus 0.91 0.91 B

Crohn disease inflammatory bowel disease 0.72 0.91 B

Sclerosing cholangitis ulcerative colitis 0.63 0.82 B

Crohn disease ulcerative colitis 0.53 0.84 B

Ankylosing spondylitis sclerosing cholangitis 0.35 0.90 B

Inflammatory bowel disease sclerosing cholangitis 0.44 0.76 B

Bipolar disorder schizophrenia 0.71 0.42 B

Rheumatoid arthritis systemic lupus erythematosus �0.47 0.51 C

Celiac disease systemic lupus erythematosus �0.16 0.58 C

Sclerosing cholangitis systemic lupus erythematosus �0.24 0.49 C

Crohn disease sclerosing cholangitis 0.17 0.83 C

Rheumatoid arthritis sclerosing cholangitis 0.07 0.69 C

Crohn disease rheumatoid arthritis 0.06 0.66 C

Systemic lupus erythematosus ulcerative colitis �0.16 0.43 C

Crohn disease systemic lupus erythematosus �0.10 0.49 C

Type 1 diabetes mellitus type 2 diabetes mellitus 0.85 0.10 D

Diabetes mellitus type 1 diabetes mellitus 0.91 0.20 D

Celiac disease obsessive-compulsive disorder 0.36 �0.26 D

Diabetes mellitus obesity 0.54 0.01 D

Obesity osteoarthritis 0.49 0.02 D

Attention-deficit hyperactivity disorder obesity 0.44 0.03 D

Attention-deficit hyperactivity disorder osteoarthritis 0.40 0.00 D

Obesity type 1 diabetes mellitus 0.40 0.00 D

This table shows the genetic correlation andmodel similarity for some disease pairs as we selected. For quadrants B, C, and D, we picked 8 disease pairs, where sgþ
sm, sg – sm, and sm – sg are the highest, respectively. sg, genetic correlation; sm, model similarity.
removed the disease-associated SNVs (a total of 311 SNVs)

from our analyses.

d SNPsnap-TSS matching: this is essentially the same as in

SNPsnap matching but controlling only for the distance to

the nearest genes (maximum allowable deviation: 20%);

for three other attributes, ‘‘maximum allowable deviation’’

is set to 10,000%. We note that in both SNPsnap matching

and SNPsnap-TSS matching, the distance is measured by

the distance to the nearest gene, whereas for TSS matching,

only protein-coding genes are considered.

In all four matching strategies, we excluded variants annotated

in the GWAS Catalog as control SNPs. One control variant can

only be matched to one disease-associated SNV. In our research,

we chose SNPsnap matching for our main results, but we have

compared the different performances of organism-level scores

using the four different matching strategies (see supplemental

methods and Figures S1 and S2). We also provided the four sets

of control variants in Data SD3.

Additional data sources and variant scores

We used pre-computed SNP annotations from the following

sources: CADD v.1.3 (http://krishna.gs.washington.edu/download/
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CADD/v1.3/1000G_phase3.tsv.gz); EigenPC v.1.1 (https://xioniti01.

u.hpc.mssm.edu/v1.1); Fitcons2 (http://compgen.cshl.edu/fitCons2/

hg19); GenoCanyon (http://genocanyon.med.yale.edu/GenoCanyon_

Downloads.html); GenoSkylinePlus (http://genocanyon.med.yale.edu/

GenoSkylineFiles/GenoSkylinePlus/GenoSkylinePlus_bed.tar.gz); GWAVA

v.1.0 (ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/

VEP_plugin/gwava_scores.bed.gz); LINSIGHT (http://compgen.

cshl.edu/%7Eyihuang/tracks/LINSIGHT.bw); and DIVAN (https://

sites.google.com/site/emorydivan). DHS accessibility: we down-

loaded Avocado-imputed54 DHS signals for 127 ENCODE biolog-

ical contexts (tissues/cell types) from https://noble.gs.washington.

edu/proj/avocado/data/avocado_full/DNase/.

Tissue-weighted variant prioritization based on DNase1

hypersensitivity
A penalized logistic regression model for context-weighted score aver-

aging

For predicting SNP’s associations with a disease term, we

consider SNPs as observations, and each is described as a vector

x ˛ Rd of variant scores in d tissues/contexts; we arrange vec-

tors fxigni¼1 for n observations in a matrix X˛Rn3d together

with a vector y of n binary entries, encoding for each SNP its
4
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association with a specific disease term (no ¼ 0/yes ¼ 1). In

addition, we denote the average score (across contexts) for an

SNP i by xi, which is also a basline score because it aggregates

across contexts.

We use a logistic regression model of the form

log
pi

1 � pi
¼ axi þ b0xi s:t: aR0; (Equation 1)

where a0 ˛R, a˛Rþ, and b˛Rd are regression coefficients and pi is

the probability that SNP i is associated with a disease that is stud-

ied. We fit a regularized version of the negative log likelihood

argmina;a0 ;b
� 1

2

Xn

i¼1

�
logð1 � p1Þþ yi log

pi
1 � pi

�
þ ljjbjj22

2
;

(Equation 2)

where the dependence on fa;a0;bg of the first term is through

Equation 1. For large regularization parameters l, this will yield

small b / 0 and recover the baseline (x) of unweighted averaging

of context scores (scaled by a non-negative factor a). We imple-

mented this approach using the R package glmnet (v.2.0-1855)

and determined the regularization parameter via 5-fold cross-vali-

dation (cv.glmnet function) through maximizing the area under

the (cross-validated) ROC curve. In the nested 5-fold cross-valida-

tion, we used the inner loop to select the regularization parameter

l and the selected l to train and test the model in the outer loop.

Class weights were employed to balance skewed class sizes.

Disease similarities from context-weighted score averaging

Context-weighted score averaging, as described above, results in

disease-specific coefficient vectors (fbðiÞg, with i indexing disease

terms), together with bootstrap estimates for the standard devia-

tion of each coefficient (that can be arranged in corresponding

vectors fgðiÞg). Specifically, we use 5-fold cross-validation repeated

10 times, yielding 50 coefficient vectors for each disease. We use

their mean for our estimate of bðiÞ and their standard deviation

as an estimate of gðiÞ. For a pair of diseases ðdi;djÞ, we then define

a disease similarity through the similarity of associated coefficient

vectors bðiÞ and bðjÞ, taking into account our estimates of coefficient

variability. Specifically, we fit a weighted linear regression model

(i.e., regressing vectors bðiÞ on bðjÞ), with regression weights taking

into account coefficient variability as follows:

w
ði;jÞ
k ¼ 1ffiffiffiffiffiffiffiffi

siks
j
k

q and s+k ¼ ag
ð+Þ
k þ ð1 � aÞm for +˛ fi; jg;

(Equation 3)

where we chose m to be the 25% quantile of all (estimated) stan-

dard deviations observed and a ¼ 3/4. Therefore, sik and s
j
k are

shrunken versions of the standard deviations for the regression co-

efficients of disease i and disease j in tissue/context k, respectively.

Finally, for disease pairs with a positive coefficient from the

weighted linear regression, we take the coefficient of determina-

tion (r2) as a similarity measure; for disease pairs with a negative

coefficient, we take �r.2 We note that for constant regression

weights fwði;jÞg, this is equal to the Pearson correlation between

the coefficient vectors we obtain from context-weighted score

averaging (i.e., corðbðiÞ;bðjÞÞ.
Variant prioritization performance
Tissue-weighted cross-validation performance

To measure the cross-validation performance of tissue-weighted

scores, we use repeated cross-validation56 to reduce the variance

(due to the random partitioning of data into 5-fold). Here, we
Hum
repeat fold cross-validation 30 times and record the performance

of each repeat. We later use the mean performance of the 30 re-

peats as the performance of that method, and we also show the

variance in figures, such as in Figure 5.

Comparing organism-level scores

For each disease, we have disease-associated and control SNVs and

corresponding pre-computed organism-level scores. With this

setup, we calculate performance metrics of interest (AUROC and

average precision) and obtain disease-specific performancemetrics

for each scoring approach. To compare performances between or-

ganism-level scores on the same disease, we use performance mea-

sures computed on 30 bootstrap samples (each bootstrap sample

randomly contains 90% of disease and control variants) and

then employ the Wilcoxon signed-rank test to test to assess differ-

ences in performance. This yields p values as reported in Data SD4.

With respect to aggregating comparisons across diseases, we

note that disease terms can (and do) share SNVs, so performance

metrics in different terms are not necessarily independent. Also,

disease terms can vary substantially in the number of annotated

SNPs. We again use the Wilcoxon signed-rank test57 on perfor-

mance metrics (computed using all disease-associated and control

SNVs for each disease term) to compare two organism-level variant

score aggregates across diseases. This approach yields p values, as

reported in Data SD5.

Comparing tissue-weighted scores

Tissue-weighted baseline scores (see above) are calculated in the

same way as organism-level scores. For tissue-weighted scores

with data-driven tissue-specific weighting (see above), we use

cross-validated performance measure for each bootstrap sample

and the same 30 bootstrap samples as when we compared between

organism-level scores. And then, we use the same Wilcoxon

signed-rank tests to measure the difference. For comparing scores

aggregated across diseases, we again proceed analogous to organ-

ism-level scores and use a Wilcoxon signed-rank test on cross-vali-

dated disease-specific performance measures. Results are summa-

rized in Data SD8 and SD9.

Comparing organism-level and tissue-weighted scores

For comparisons between organism-level and tissue-combined

scores, we again use a bootstrap approach: for a specific disease

term, we use the Wilcoxon signed-rank tests as discussed above

to compare performance measures from organism-level scores

with tissue-weighted scores. We note that this approach does

not take into account (1) variability in the organism-level scores

originating form variability of the data they are derived from or

(2) the possibility that organism-level scores may have already

used SNPs in their score derivation process, and we use them again

for evaluation in their score derivation process. However, we do

not expect these issues to substantially confound or results, and

we note that incurred bias in our comparisons would expected

to be in favor of organism-level scores. The results are summarized

in Data SD6–SD11.

DIVAN performance assessment and comparison

To assess and compare our performance with DIVAN,22 we gener-

ated a test set of SNPs from the GWAS Catalog that were (1) added

after DIVAN had been published (i.e., after May 28, 2016), (2) not

present in the database used to train DIVAN (association result

browser: https://www.ncbi.nlm.nih.gov/projects/gapplus/sgap_

plus.htm), (3) not within a 1 kb distance around SNPs used

to train DIVAN, and (4) annotated to a disease phenotype ad-

dressed by DIVAN. Control SNPs were generated using SNPsnap

matching, as described above. To be able to satisfy criterion (4),

we mapped our disease terms (EFO terms) to disease terms used
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by DIVAN (MeSH terms) using the EMBL-EBI Ontology Xref Ser-

vice (https://www.ebi.ac.uk/spot/oxo/, retrieved on April 19,

2020) and were able to resolve 41 out of 45 terms (Data SD12).

Of these, we keep terms with 20 or more disease-associated

SNPs in the test set and 50 or more SNPs in a training set that

we also constructed (see below), yielding 29 overall disease phe-

notypes that we used in our analysis. In order to fairly compare

DIVAN with our logistic regression approach, we constructed a

training set using disease-associated SNPs from the GWAS Cata-

log and the Phenotype-Genotype Integrator (https://www.ncbi.

nlm.nih.gov/gap/phegeni),58 excluding SNPs in the test dataset

describe above or SNPs within 1 kb around test SNPs. Data

SD13 summarizes test and training data used for this analysis.

The results are summarized in Data SD14.

Performance assessment using chromosome holdout

To assess the performance of our DHS tissue-weighted score, we

also used a chromosome hold-out strategy with test SNPs on

different chromosomes from training data. Specifically, for each

disease, we choose a set of chromosomes that contains approxi-

mately 20% SNVs with a 1/10 positive-to-negative ratio (the

same as the cross-validation setting) as a test set. The selection of

test chromosomes is performed for each disease term separately,

as disease-associated SNPs differ. To automate the procedure, we

deployed (binary) linear programming to pick out chromosomes

in the test set for each disease. Specifically, for each disease term,

we solve the optimization problem

argmaxfxig22i¼1

X22
i¼1

cixi;

subject to
X22
i¼1

wþ
i xi % 0 and xi ˛ f0;1g; (Equation 4)

where fxig are binary indicator variables whether a chromosome is

included in the test/hold-out set, wþ
i and w�

i are the fractions of

disease-associated (wþ
i ) and control SNPs (w�

i ) on chromosome I,

and weights in the objective function are defined as ci ¼ wþ
i ���wþ

i � w�
i

��. This approach selects, for each disease term, a set of

chromosomes to hold out that contain about 20% of disease-asso-

ciates SNPs and that approximately reflects the overall imbalance

between disease-associated and control SNPs. Figures S17 and S18

contain performance evaluations on chromosome hold-out sets.

Performance assessment using one SNP per LD block

To assess the effect of SNP correlation on our results, we also per-

formed analyses using only a single representative SNP per LD

block (defined by r2 R 0.5; see disease-associated variants). The re-

sults are shown in Figures S19 and S20.
Comparison with genetic correlation
We retrieved genetic correlation values of disease pairs from the

GWAS Atlas.34 To be able to use these data, wemapped EFO disease

terms (used in the NIH-NCBI GWAS Catalog and in our study) to

terms used in the GWAS Atlas study. To do so, we extracted syno-

nyms of each EFO term (as listed on EFO ontology) and compared

each synonym to the ‘‘trait’’ and ‘‘uniqtrait’’ columns in the GWAS

Atlas data. All matches (with one tolerated letter substitution) were

used.

In this approach, a single EFO term can map to multiple GWAS

Atlas traits and studies. To estimate the genetic correlation be-

tween two EFO terms (say, di and dj), we use a weighted combina-

tion of genetic correlation values:
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rg
�
di; dj

� ¼
X
l;m

Wlmrg
�
sðdiÞl; s

�
dj
�
m

	
; (Equation 5)

where rgð$; $Þ is the genetic correlation of two diseases, fsðdiÞgri¼1

and fsðdjÞgsj¼1 are the GWAS Atlas studies that are mapped to

EFO term di and dj, respectively, and wlm is a weight for each com-

bination of the GWAS Atlas studies accounting for the sample sizes

of different studies used to estimate genetic correlation values. We

choose

wlm ¼ ~w
�
sðdiÞl

�
$~w

�
s
�
dj
�
m

	
; (Equation 6)

where

~w
�
sðdiÞl

� ¼ size
�
sðdiÞl

�,X
k

size
�
sðdiÞk

�
; (Equation 7)

where ‘‘size’’ denotes the sample size of a study. This scheme puts

higher weights on studies with large sample sizes and smaller

weights on studies with smaller sample sizes.

Notes about epimap comparison, cluster annotation,

and display
Epimap trait-tissue association

To create Table 5, we obtained the latest SNP-centric GWAS enrich-

ments table from the EpiMap Repository at http://compbio.mit.

edu/epimap/. We retrieve tissues with adjusted p values for

each disease.Wemap the tissue names used in our study (Standard

Roadmap Epigenomes, as labeled by EID) to tissue names used in

epimap (biosamples, as labeled by BSS biosample ID) by adapting

the scripts from https://github.com/cboix/EPIMAP_ANALYSIS/

blob/master/metadata_scripts/get_roadmap_mapping.R. If there

are more than one biosample tissues mapped to roadmap tissues,

then we report the p value of the tissue with the most significant

result.

Disease group names

To name each cluster/group of diseases/EFO terms in Table 6, we

choose the EFO term that contains most of the cluster/group

members. In Data SD21, we summarize the terms with high

term frequency in each cluster, where term frequency is the frac-

tion of the descendant terms present. For example, the EFO term

‘‘immune system disease’’ (EFO: 0000540) has a term frequency

of 0.588 in the ‘‘immune-1 cluster’’; this means that 58.8% of

EFO terms in that cluster are descendants of EFO: 0000540. We

exclude the terms that are overly broad such as the term ‘‘disease’’

or ‘‘experimental factor ontology.’’ For each cluster, we rank the

cluster member EFO terms using term frequency and select as

the name a meaningful term with the high term frequency. For

one cluster where no term had high frequency, we chose the

name ‘‘heterogeneous.’’

We also show a diagrams of EFO disease term relationships

in each cluster in Figures S10–S126. Occasionally, we include

ancestor EFO terms not present in the cluster in a diagram, which

are marked by asterisks.

Dimension reduction and coefficient heatmap

UMAP plot: the two-dimensional UMAP plot of the 111 EFO dis-

ease terms in Figure 8 is based on disease similarities based on

context-weighted score averaging (see disease similarities from

context-weighted score averaging). The umap function of the

uwotR package was used with the parameters n neighbors ¼ 15,

ret model ¼ TRUE, and PCA center ¼ FALSE.

Coefficient heatmap: the heatmap in Figure 9 displays coeffi-

cient vectors of models for disease association (see a penalized
4
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logistic regression model for context-weighted score averaging),

normalized for each disease. Specifically, for each disease and tis-

sue coefficient xi,

~xi ¼

 ðxi � xmin Þ=x95 xi % x95

1 xi > x95
; (Equation 8)

where xmin is the minimum coefficient for a disease and x95 is the

95% quantile.

Cluster-associated tissues: for each cluster, we show the top five

tissues that are most associated with the cluster (Figure 9). To iden-

tify these tissues, we conduct a two-sample Wilcoxon test (one-

sided) on every tissue, where we compare normalized tissue coef-

ficients for this cluster to the other with the highest coefficients

on average. The five tissues with the smallest p value are then

selected as the top five tissues.

Tissue-associated clusters: for the heatmap with all tissues in

Figure S9, we assigned a cluster to each tissue. For each tissue,

we calculated the median (across disease terms of a cluster) of

the normalized coefficients for all clusters; the cluster with the

highest median was assigned.
Data and code availability

Public data repositories were used as detailed in the mate-

rials and methods section, and data underlying the tables

and figures are available as supplemental information

online. 25-bp-resolution tissue-weighted DHS scores are

available for download at https://doi.org/10.7910/DVN/

AUAJ7K, and the computer code used to generate the

analyses presented is available at https://github.com/

kostkalab/nc-gwassnps-score_manuscript.
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Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2024.100310.
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