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Abstract

Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible
for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the
most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in
precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET kinase domain variants
to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET
kinase domain. We identified common resistance sites across type I, type II, and type I ½ inhibitors,
unveiled unique resistance and sensitizing mutations for each inhibitor, and validated non-cross-resistant
sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and
chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study
demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference
dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug
development.

Introduction

Receptor Tyrosine Kinases (RTKs) are critical signaling molecules that activate and regulate cellular
pathways. Disruption of typical RTK regulatory mechanisms through point mutations, gene amplification,
protein fusions, or autocrine loops can drive the development, maintenance, and spread of cancers. Small
molecule inhibitors are designed to disrupt aberrant signaling cascades by selectively targeting the kinase
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domain, with tyrosine kinase inhibitors (TKIs) like imatinib showing durable treatment outcomes (Cohen et
al., 2021; Attwood et al., 2021). Inhibitors are generally designed against either a wild type kinase or a
specific mutational profile, yet acquired mutations can alter sensitivity to different inhibitors and undermine
efficacy. The most extreme case of this is resistance, which emerges in the treatment of many cancers by
TKI selective pressure (Cohen et al., 2021; Attwood et al., 2021). These mutations may act by altering
kinase stability, expression, conformation, or activity of the target kinase. Although several recurrent
mutations at inhibitor-interacting positions have predictable resistance, specific and rare resistance
mutations can be associated with the interactions or conformations unique to certain inhibitors.

An attractive strategy to counter resistance is optimizing the interactions that differ between inhibitors.
Small-molecule kinase inhibitors fall into four distinct groups, characterized by their binding modality to the
ATP pocket and conformational preferences (Arter et al., 2022; Attwood et al., 2021; Zuccotto et al.,
2009). Among these groups, three are ATP-competitive: type I, type II, and type I½ (Figure 1A-C). Type I
inhibitors occupy the adenosine binding pocket, form hydrogen bonds with "hinge" region residues, and
favor an active conformation. Type II inhibitors also occupy the adenosine pocket but extend into an
opening in the R-spine that is accessible in an inactive conformation (Arter et al., 2022) (Figure 1B). Type
I½ inhibitors combine features from both type I and type II inhibitors, engaging with both the adenosine
pocket and the R-spine pocket (Arter et al., 2022) (Figure 1B). Finally, type III inhibitors are allosteric,
non-ATP competitive inhibitors (Arter et al., 2022) (Figure 1B). Given the chemical interaction differences
and conformational preferences among TKI groups for distinct kinase states, a general approach to
combating resistance is sequential treatment of type I and II inhibitors (Recondo et al., 2018). However,
without understanding the potential sensitivity of an acquired resistance mutation to the subsequent
inhibitor, the efficacy of such strategies is not guaranteed.

The problem of which inhibitor to use and in what order is exemplified by the choice of inhibitors targeting
MET kinase (Bahcall et al., 2016; Recondo et al., 2020; Fernandes et al., 2021). MET is an RTK and
proto-oncogene that has been implicated in the pathogenesis of gastric, renal, colorectal, and lung cancers
Frampton et al., 2015; Duplaquet et al., 2018; Wood et al., 2021; Lu et al., 2017). Molecular profiling
and next-generation sequencing of tumor samples has provided insight on cancer-associated MET variants
(Frampton et al., 2015; Bahcall et al., 2021). Clinical reports following post-treatment outcomes have
documented recurrent resistance mutations at positions such as D1228, Y1230, G1163, L1195, H1094 for
MET (Fernandes et al., 2021; Lu et al., 2017; Recondo et al., 2020). The challenge of acquired
resistance following MET inhibitor therapy has been approached with strategies including sequential
treatment of type I and type II TKIs (Bahcall et al., 2016; Recondo et al., 2020), and combination therapy
with type I and type II TKIs (Bahcall et al., 2022; Fernandes et al., 2021; Smyth et al., 2022). However,
without extensive documentation of the behavior of resistance and sensitizing mutations in MET towards
specific TKIs, there remains a barrier towards leveraging inhibitors for specific mutational responses,
optimizing inhibitor pairings, and informing rational drug design. Thousands of compounds have been
screened against the MET kinase domain, and while several have undergone clinical trials, currently four
MET inhibitors have received FDA approval: crizotinib, cabozantinib, tepotinib, and capmatinib (Santarpia
et al., 2021; Wang and Lu, 2023). Nevertheless, the emergence of resistance not only limits the efficacy of
these drugs but also poses challenges for second-line therapeutic strategies, particularly in the context of
rare and novel mutations.
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Previously, we used Deep Mutational Scanning (DMS), a pooled cellular selection experiment, to massively
screen a library of nearly all possible MET kinase domain mutations. The juxtamembrane domain is
encoded by Exon 14 in MET, serves an incompletely understood negative regulatory function in the kinase
(Ma et al., 2003) and is recurrently excluded in cancer by somatically encoded exon skipping mutations.
By testing this library in the context of a wild-type intracellular domain and the recurrent cancer exon 14
skipped variant (METΔEx14) (Figure 1E), we identified conserved regulatory motifs, interactions involving
the juxtamembrane and ⍺C-helix, a critical β5 motif, clinically documented cancer mutations, and classified
variants of unknown significance (Estevam et al., 2024). Understanding how these variants respond to
specific inhibitors can inform therapeutic strategies, with precedent in inhibitor-based DMS studies across
kinases such as ERK, CDK4/6, Src, EGFR, and others (Brenan et al., 2016; Persky et al., 2020;
Chakraborty et al., 2023; An et al., 2023).

Here, we explore the landscape of TKI resistance of the MET kinase domain against a panel of 11
inhibitors, utilizing our previously established platform (Estevam et al., 2024). By profiling a
near-comprehensive library of kinase domain variants in the MET and METΔEx14 intracellular domain, we
captured a diverse range of effects based on inhibitor chemistry and 'type' classifications (Figure 1). Within
our screen, mutations that confer resistance and offer differential sensitivities across inhibitors were
identified, which can be leveraged in sequential or combination therapy. We use Rosace, a Bayesian
fitness scoring framework, to reduce false discovery rates in mutational scoring and allow for
post-processing normalization of inhibitor treatments (Rao et al., 2024). With our dataset, we have
analyzed differential sensitivities to inhibitor pairs and provided a platform for assessing inhibitor efficacy
based on mutational sensitivity and likelihood. Lastly, we augment a protein language model (Rives et al.,
2021; Brandes et al., 2023; Chen and Guestrin, 2016) with biophysical and chemical features to improve
predictions for MET inhibitor datasets, and in the future more effectively learn and predict mutational fitness
towards novel inhibitors.
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Figure 1. MET kinase inhibitor types and resistance mutations screened against a nearly
comprehensive library of kinase domain substitutions. (A) Crystal structure of the ATP-bound MET
kinase domain (3DKC) overlaid with type Ia (crizotinib, 2WGJ), type Ib (savolitinib, 6SDE), type II
(merestinib, 4EEV), type I½ (AMG-458, 5T3Q), and type III inhibitors (tivantinib, 3RHK). (B) Pocket view of
ATP and each inhibitor type bound to the active site of the MET kinase domain with the respective inhibitor
and crystal structures from panel A. (C) 2D chemical structures of each inhibitor screened against the site
saturation mutagenesis library of the MET kinase domain, with each experimentally determined IC50 values
displayed for Ba/F3 cells stably expressing the wild-type MET ICD in a TPR-fusion background. (D)
Dose-response curves for each inhibitor against the wild-type MET intracellular domain expressed in a
TPR-fusion in the Ba/F3 cell line. (E) Schematics of the full-length and exon 14 skipped MET receptor
alongside the TPR-fusion constructs with the full-length and exon 14 skipped intracellular domain,
displaying four mechanisms of oncogenic activity: point mutations, exon 14 skipping, constitutive activity
through domain fusions, and inhibitor resistance mutations. (F) Experimental workflow for defining the
mutational landscape of the wild-type TPR-MET and exon 14 skipped TPR-METΔEx14 intracellular domain
against 11 ATP-competitive inhibitors in Ba/F3, interleukin-3 (IL-3) withdrawn pooled competition assay.

Results

Measuring the mutational fitness of 5,764 MET kinase domain variants against
ATP-competitive inhibitors

To evaluate the response of MET mutations to different inhibitors, we selected six type I inhibitors
(crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, and NVP-BVU972), three type II inhibitors
(cabozantinib, glesatinib analog, merestinib), and a proposed type III inhibitor, tivantinib (Figure 1C). Type I
MET inhibitors leverage pi-stacking interactions with Y1230 and salt-bridge formation between D1228 and
K1110, and are further classified as type Ia or Ib based on whether they interact with solvent front residue
G1163 (Figure 1C) (Cui 2014; Fujino et al., 2019; Wang et al., 2023). Here we specifically define type Ia
inhibitors as having a solvent-front interaction (Cui 2014), which structurally classifies tepotinib and
capmatinib as type Ia based on our analysis and inhibitor docking models (Figure 1A-C), despite
classification as type Ib in other studies (Brazel et al., 2022; Fujino et al., 2022; Recondo et al., 2020)
(Figure 1 - figure supplement 1).

As in our previous work, we employed the Ba/F3 cell line as our selection system due to its undetectable
expression of endogenous RTKs and addiction to exogenous interleukin-3 (IL-3) (Estevam et al., 2024).
These properties allow for positive selection based on ectopically expressed kinase activity and
proliferation in the absence of IL-3 (Daley and Baltimore, 1988; Warmuth et al., 2007; Koga et al., 2022).
We used a TPR-MET fusion to generate IL-3 independent constitutive activity (Estevam et al., 2024).
While this system affords cytoplasmic expression, constitutive oligomerization, and HGF-independent
activation, features like membrane-proximal effects are lost (Cooper et al., 1984; Park et al., 1986;
Peschard et al., 2001; Rodrigues and Park, 1993; Vigna et al., 1999; Mak et al., 2007; Pal et al., 2017;
Lu et al., 2017; Fujino et al., 2019). The constitutive activity of TPR-MET and the reliance of Ba/F3 cells
on that activity render this selection system quite sensitive for determining reduction in growth from small
molecule inhibition.
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We generated dose response curves for each inhibitor against wild-type TPR-MET (wild-type intracellular
domain, including exon 14 that contains the CBL docking site) and TPR-METΔEx14 (exon 14 skipped
intracellular domain) constructs, stably expressed in Ba/F3 cells to determine IC50 values for our system
(Figure 1D; Figure 1 - figure supplement 1).We used our previously published library harboring >99% of
all possible 5,764 kinase domain (1059-1345aa) mutations in a TPR-fusion background carrying either a
wild-type MET or exon 14 skipped intracellular domain (Figure 1E) (Estevam et al., 2024). Time points
were selected every two cell doublings over the course of four time points, and cells were split and
maintained in the absence of IL-3 and drugs at IC50 for each inhibitor, including a DMSO control. All
samples, across all time points and replicates, were prepared for next-generation sequencing (NGS) in
parallel, and sequenced on the same Illumina NovaSeq 6000 flow cell to identify variant frequencies
(Figure 1F). We then calculated variant fitness scores using Rosace (Rao et al., 2024) (Figure 1F; Figure
1 - figure supplement 1-4). We performed parallel analysis of the TPR-MET and TPR-METΔEx14
screens; however, we focus our analysis below on TPR-MET with the parallel and largely consistent
analyses of TPR-METΔEx14 available in the supplement.
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Figure 2. Mutational landscape of the MET kinase domain under 11 ATP-competitive inhibitor
selection. (A) Distributions of all variants (wild-type synonymous, early stop, and missense) for each
condition in the wild-type TPR-MET kinase domain, scored with Rosace and normalized to the growth rate
of the DMSO control population. (B) Correlation plots for all mutational fitness scores for each drug against
DMSO, fitted with a linear regression and Pearson’s R value displayed. (C) Heatmap showing the
Pearson’s R correlation for each condition against each other, annotated by condition and inhibitor type.
Correlations are colored according to a scale bar from gray to blue (low to high correlation). (D) Crystal
structure of the tivantinib-bound MET kinase domain (PDB 3RHK) overlaid with the ATP-bound kinase
domain (PDB 3DKC), with tivantinib-stabilizing residues and overlapping density of tivantinib (orange) and
ATP (purple) highlighted. (E) Dose responses of crizotinib and tivantinib tested against stable Ba/F3 cells
expressing the wild-type intracellular domain of MET fused to TPR, tested in the presence and absence of
interleukin-3 (IL-3).

Defining the mutational landscape of resistant and sensitizing mutations for the MET
kinase domain.

While growth rates were experimentally controlled through equipotent dosing during selection, there was no
direct way to validate this post-processing. To generate meaningful comparisons between inhibitor scores
and conditions, in addition to performing downstream score subtractions, we normalized cell growth rates
for each inhibitor to the growth rate observed for the DMSO population. As expected, the DMSO control
population displayed a bimodal distribution with mutations exhibiting wild-type fitness centered around 0,
with a wider distribution of mutations that exhibited loss- or gain-of-function effects (Figure 2A). Also as
expected, inhibitor-treated populations displayed distributions with a loss-of-function peak, representative of
mutations that are sensitive to the inhibitor. Unlike DMSO, inhibitor populations were right-skewed, showing
greater enrichment of gain-of-function scores at the positive tail of distributions (Figure 2A). These
population differences were exemplified by the low correlation between each inhibitor and DMSO, with
capmatinib showing the greatest difference from DMSO with a Pearson’s correlation of 0.45, and tivantinib
standing as an outlier with a Pearson’s correlation of 0.93 (Figure 2B).

In comparing all conditions to each other, we were able to further capture differences between and within
inhibitor types. Type II inhibitors displayed the greatest similarities to one another, with merestinib and the
glesatinib analog having the highest correlation (r = 0.93) and cabozantinib and glesatinib analog showing
the lowest (r = 0.87) (Figure 2C). While type I inhibitors were also highly correlated, capmatinib stood out
as an outlier, displaying the lowest correlations potentially due to difficulty in experimental overdosing due
to its greater potency (Bahcall et al., 2022; Fujino et al., 2019) (Figure 2C). While there was only one
type I½ inhibitor, AMG-458, it displayed higher similarity to type II inhibitors than to type I, likely due to
similar type II back pocket interactions with the kinase R-spine (Figure 1B; Figure 2C). Nevertheless,
AMG-458 was most distinct from cabozantinib (r = 0.83) and type I inhibitors tepotinib (r = 0.79) and
savolitinib (r = 0.73) (Figure 2C). Between type I and type II groups, with the exception of capmatinib,
tepotinib and savolitinib showed the lowest correlation with merestinib and glesatinib analog (Figure 2C).

The strong correlation of tivantinib with the DMSO control (r = 0.93) and low correlation with all other
inhibitors suggested a MET-independent mode of action. Until recently (Michaelides et al, 2023), tivantinib
was considered the only type III MET-inhibitor and showed promising early clinical trial results (Eathiraj et
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al., 2011; Wang et al., 2022). In vitro assays on the purified MET kinase domain have shown that tivantinib
has the potential to hinder catalytic activity (Munshi et al., 2010) and structural studies revealed that it
selectively targets an inactive DFG-motif conformation, with tivantinib stabilizing residues (F1089, R1227)
blocking ATP binding (Figure 2D) (Eathiraj et al., 2011). Yet in contradiction, comparative MET-dependent
and MET-independent cell-based studies on tivantinib have also shown MET agnostic anti-tumor activity,
posing that tivantinib may have an alternative inhibitory mechanism than a MET-selective one (Michieli
and Di Nicolantonio, 2013; Basilico et al., 2013; Katayama et al., 2013; Fujino et al., 2019).

Therefore, to test the hypothesis that tivantinib is not MET-selective in our system, we compared the dose
response of tivantinib and crizotinib in the presence and absence of IL-3 for wild-type TPR-MET, stably
expressed in Ba/F3 cells (Figure 2E). As expected, crizotinib only displayed an inhibitory effect under IL-3
withdrawal, highlighting a MET-dependent mode of action. In contrast, tivantinib displayed equivalent
inhibition regardless of IL-3, reinforcing that tivantinib has cytotoxicity effects unrelated to MET inhibition
(Figure 2E) and underscores the sensitivity of the DMS in identifying direct protein-drug effects.

Crizotinib-MET kinase domain resistance profiles exemplify the information accessible
from individual inhibitor DMS

As an example of the insights that can be learned from the inhibitor DMS screens, we examined the profile
for crizotinib, one of four FDA approved inhibitors for MET and a multitarget TKI (Cui et al., 2011; Wang
and Lu, 2023; Santarpia et al., 2021). To identify mutations that show gain-of-function and loss-of-function
behaviors specific to inhibitors compared to DMSO, we subtracted DMSO from all fitness scores. (Figure
3A), with the expectation that effects related to expression or stability would be similar in both conditions,
enhancing the ability to identify drug sensitivity or resistance. Indeed, the highest frequency of
gain-of-function mutations occurred at residues mediating direct drug-protein interactions, such as D1228,
Y1230, and G1163. These sites, and many of the individual mutations, have been noted previously in
clinical reports (Fernandes et al., 2021; Yao et al., 2023; Tovar and Graveel, 2017; Tiedt et al., 2011).
Beyond these well characterized sites, regions with sensitivity occurred throughout the kinase, primarily in
loop-regions which have the greatest mutational tolerance in DMSO, but do not provide a growth
advantage in the presence of an inhibitor (Figure 1 - figure supplement 1; Figure 1 - figure supplement
2).

In mapping positions with resistance to the crizotinib-bound kinase domain crystal structure (PDB 2WGJ),
our DMS results further emphasize the emergence of resistance mutations at the ATP-binding site and
direct-protein drug interacting residues (Figure 3B-D). Mutations to the hinge position, Y1159, and C-spine
residues, including M1211 and V1092, introduce charge or are predicted to change the conformation of the
pocket to clash with crizotinib but not ATP (Figure 3E-G). Outside of direct drug-protein interactions,
positions I1084, T1261, Y1093, and G1242 displayed the largest resistance signals (Figure 3A-D).
Structurally, I1084 is located in β1 at the roof of the ATP-binding pocket. The R-group of a His mutation at
this position clashes with crizotinib’s hinge-binding and solvent-front moieties but does not interfere with
bound-ATP (Figure 3E-F). Y1093 is also at the roof of the ATP-binding site, residing in β2 (Figure 3B).
However, its structural influence on resistance is unobvious. In all rotameric states, the R-group of Y1093
points away from the catalytic site and does not clash with crizotinib. We speculate that Y1093 mutations
may negatively impact crizotinib’s stability in the catalytic site compared to ATP, as ATP's triphosphate
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groups are stabilized by the P-loop. Therefore, comparing crizotinib to DMSO highlights both known
hotspots and rarer sites like I1084 and Y1093, which may contribute to resistance through conformational
changes rather than disrupting direct inhibitor-protein contacts. Specific inhibitor fitness landscapes also aid
in identifying mutations with potential drug sensitivity, such as R1086 and C1091 in the MET P-loop, which
might represent attractive interacting sites for further drug design with a lower probability of acquiring
resistance.

We identified unique resistance mutations enriched at the ATP-binding site across all inhibitors, yet also
noticed discernible differences between type I and II inhibitors, the R-spine, and ⍺C-helix (Figure 4A-G).
Mapping inhibitor-specific positions and mutational scores, not only provides a mutation-level breakdown of
inhibitor contributions to common resistance mutations, but also demonstrates differences in structural
resistance enrichment across specific inhibitors (Figure 4A-G). To summarize this information, we next
examined trends by grouping inhibitors by type.
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Figure 3. Novel resistance mutations identified and mapped for crizotinib. (A) Heatmap of crizotinib
fitness scores subtracted from DMSO, scaled from loss-of-function (red) to gain-of-function (blue), with the
wild-type protein sequence, secondary structure, kinase domain residue position, and mutational
substitution annotated. Wild-type synonymous substitutions are outlined in green. (B) Resistance positions
mapped onto the crizotinib-bound, MET crystal structure (PDB 2WGJ). Positions are labeled and colors are
scaled according to the average score for the resistance mutations at each site. (C) 2D protein-drug
interactions between crizotinib and the MET kinase domain (PDB 2WGJ) with pocket residues and polar
and pi interactions annotated. Schematic generated through PoseEdit (Diedrich et al., 2023)
(https://proteins.plus/). (D) Condensed crizotinib heatmap displaying direct drug-protein interacting and
non-direct resistance position. (E) Crizotinib binding site and pocket residues displayed with resistance
positions highlighted (pink) and the wild-type residue and inhibitor interactions shown (PDB 2WGJ). (F)
Resistance mutations modeled for I1084H, V1092I, Y1159R, M1211Y, and N1167 relative to ATP (PDB
3DKC).
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Figure 4. Resistance mutations mapped onto experimental and docked kinase domain structures
for type I and type II inhibitors. (A-F) Resistance positions and average resistance mutational score
mapped onto representative crystal structures (tepotinib, 4R1V; merestinib, 4EEV) and labeled (type I, pink;
type II, blue). Inhibitors lacking experimental structures (capmatinib, cabozantinib, glumetinib, and
glesatinib) were docked onto a representative type I (PDB 2WGJ) and type II (4EEV) structure through
AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (G) Heatmaps of each resistance position
structurally modeled for each drug with fitness scores scaled from loss-of-function (red) to gain-of-function
(blue). Wild-type synonymous substitutions are outlined in green.

Novel resistance mutations identified for type I, type II, and type I ½ inhibitors

To reveal patterns across different inhibitor types, we filtered resistance mutations by their score and test
statistics (Figure 5 - figure supplement 1) and collapsed the information by inhibitor type, plotting the total
frequency of resistance mutations at each position (Figure 5A). In this condensed heatmap, several
common resistance positions emerged within and across inhibitor types to provide a broad view of
“hotspots.” Two positions stood out with the highest frequency of resistance: G1163 and D1228 (Figure
5A-D). Both sites are unsurprising due to their inhibitor interactions - G1163 is at the solvent front entrance
of the active site and D1228 stabilizes an inactive conformation of the A-loop with an inhibitor bound (Cui
2014; Recondo et al., 2020; Fernandes et al., 2021). Located at the base of the active site, M1211 is a
previously documented resistance site (Tidet et al., 2011) and a C-spine residue (Estevam et al., 2024),
which harbors a smaller number of resistance mutations for all inhibitor types within our analysis (Figure
5A). In contrast to these universal sites, Y1230 was a hotspot for type I and I ½ inhibitors, but not a major
resistance site for type II inhibitors (Figure 5A-D). This specificity can be rationalized based on the role of
Y1230 in stabilizing inhibitors through pi-stacking interactions (Cui 2014). In contrast, F1200 and L1195
(Bahcall et al., 2022; Recondo et al., 2020), are both hotspots for type II but not type I inhibitors (Figure
5A-C). Again, this effect can be rationalized structurally: both residues make direct contact with type II
inhibitors, but not type I inhibitors.

Across all inhibitor types, there were a total of 17 shared variants with G1163, D1228, and M1211 being the
most common (Figure 5G). The overall spatial pattern of mutations for each inhibitor type follows general
principles that are expected based on their interactions. For example, I1084 is enriched as a resistance site
for type I inhibitors, consistent with previous studies in hereditary papillary renal cell carcinomas (Guérin et
al., 2023). I1084 is located at the solvent front of the phosphate-loop (P-loop) of the kinase N-lobe (Figure
1A), which is responsible for stabilization of the ATP phosphate groups. This region of the kinase is
leveraged for interactions with type I, but not type II inhibitors. In contrast, L1142, an R-spine residue, and
L1140, which sits at the back of the ATP-binding pocket, are enriched for type II inhibitor resistance,
consistent with their spatial locations (Figure 5E-F). Resistance mutations tend to cluster around the
catalytic site across all types, but the shared mutations across different inhibitor types did not display a
unifying pattern that evokes a simple rule for combining or sequencing inhibitors to counter resistance
(Figure 5H).
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Figure 5. Novel resistance mutations and “hotspots” identified for MET inhibitor types. (A)
Collapsed heatmap of common resistance positions along the kinase domain, with the wild-type protein
sequence and secondary structure annotated. Each tile represents a sum of counts for statistically filtered
resistance mutations across all inhibitors for type I (pink), type II (blue), and the type I½ inhibitor AMG-458
(green), with the scale bar reflecting counts of resistance mutations across respective inhibitor types. (B-D)
Expanded heatmap showing each resistance position and the counts for each specific resistance mutation
across all inhibitor types type I (pink), type II (blue), and the type I½ inhibitor AMG-458 (green). Wild-type
sequence and variant change are annotated. (E-F) Average frequency of resistance mutations for each
mapped on to a representative type I (crizotinib, 2WGJ) and type II (merestinib, 4EEV) crystal structure,
alongside the type I½, AMG-458 structure (5T3Q), with associated scale bars. Individual positions with high
resistance mutation frequencies are annotated on each structure, with a zoom-in of the bound inhibitor and
surrounding resistance sites. (G) Venn diagram showing mutations shared among type I (pink), type II (light
blue), and type I½ (green). (H) Structurally mapped (PDB 2WGJ) resistance positions shared among type I,
II, I½ (blue-gray), type I and II (purple), type I and I½ (dusty rose), type II and I½ (teal) inhibitors.

Differential sensitivities of the MET kinase domain to type I and type II inhibitors

Strategies aimed at preventing resistance, such as sequential or combination dosing of type I and type II
inhibitors, have been explored and offer promise in preventing resistance (Bahcall et al., 2016; Recondo
et al., 2020; Bahcall et al., 2022; Fernandes et al., 2021). However, the efficacy of these strategies is
limited to the emergence of secondary resistance mutations, and specific inhibitor pairings are further
limited to case examples of disparate effects. Using our DMS datasets, we sought to identify inhibitor
pairings with the largest divergence in cross-sensitivity. By comparing the fitness landscape of each type I
inhibitor to each type II inhibitor, we could again assess inhibitor response likeness based on correlations
(Figure 2A; Figure 6 - figure supplement 1). Type I and type II pairs with the highest correlations
included capmatinib and glesatinib analog (r = 0.92), suggesting a large overlapping fitness profile, in
contrast to pairs with the lower correlations, like savolitinib and merestinib (r = 0.7) (Figure 6A; Figure 6 -
figure supplement 1). Overall, cabozantinib maintained the lowest average correlation with all type I
inhibitors, making it the most divergent type II inhibitor within our screen, and potentially offering the least
overlap in resistance (Figure 6A; Figure 6 - figure supplement 1).

To narrow our characterization of cross-sensitivity, we focused on the inhibitor pair crizotinib and
cabozantinib (Figure 6B; Figure 6 - figure supplement 1). By statistically filtering mutations that are
categorized as gain-of-function in one inhibitor, but loss-of-function in the other, a set of 44 mutations were
identified as having crizotinib resistance and cabozantinib sensitivity, and 3 mutations with the opposite
profile (Figure 6B,C). Structural mapping of divergent mutations further revealed enrichment at the N-lobe
and typical protein-drug interaction sites like Y1230, G1163, and M1211 (Figure 6B, C). While these
positions have precedence for resistance, as previously noted, they are also resistance hotspots across all
inhibitor types (Figure 5A), where even mutations with differential sensitivities may be insufficient targets to
counteract the reemergence of resistance, thus limiting the interchangeability of drugs.

Understanding which mutations have resistance profiles for only type I or type II inhibitors provides better
leverage for sequential and combination dosing. To identify such mutations across our dataset, we further
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filtered variants that met our resistance metrics and were only observed for inhibitors of the same type. In
again comparing crizotinib to cabozantinib, Y1093K was a mutation with one of the largest differences
between crizotinib and cabozantinib, having a gain-of-function profile for crizotinib and loss-of-function for
cabozantinib (Figure 6B). Interestingly, Y1093 is located in β2 of the N-lobe, at the roof of the ATP-binding
site, and does not directly engage with crizotinib. We speculate this mutation potentially contributes to
resistance by perturbing the packing of β1-β2 and altering the conformation of the ATP binding site in a
manner that destabilizes crizotinib binding. When comparing the dose-response of Y1093K to the wild-type
TPR-MET kinase domain, Y1093K shows a nearly 10-fold shift in crizotinib sensitivity with no difference in
cabozantinib sensitivity (Figure 6D). In identifying mutations with the opposite profiles, resistance to
cabozantinib and sensitivity to crizotinib, L1195M displayed the greatest differential scores (Figure 6B).
L1195 is an ⍺E-helix position with previously recorded resistance (L1195V/F), which our analysis further
supports as a type II-only resistance hotspot (Figure 5A). Structurally, mutations like Met or Phe at 1195
clash with the fluorophenyl moiety of cabozantinib used to access and stabilize a deep, back pocket of the
kinase in an inactive conformation, unlike crizotinib which occupies the solvent front and adenosine binding
region of the ATP binding site. In comparing the dose-response of L1195M to the wild-type TPR-MET
kinase domain, we find that L1195M is refractory to all concentrations of cabozantinib tested, but still
sensitive to crizotinib (Figure 6D). Beyond a type I and type II pairing, such cross-resistance identification
can be further applied to identify differential sensitivities within an inhibitor group (Figure 6 - figure
supplement 2), which can further expand opportunities for inhibitor-specific sensitivity in therapy and drug
design.
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Figure 6. MET kinase domain differential sensitivities revealed for type I and type II inhibitors. (A)
Heatmap showing Pearson correlation values for all combinations of screened type I and type II inhibitors.
Correlations were determined from DMSO subtracted fitness scores (B) Correlation plot correlation plot of
DMSO subtracted fitness scores for crizotinib and cabozantinib. Mutations with differential scores are
highlighted for type I (pink) and type II (blue). (C) Average scores of mutations with differential sensitivities
within inhibitor pairs mapped and annotated in respective crystal structures (crizotinib, 2WGJ; cabozantinib,
docked into 4EEV). Positions that are gain-of-function for type I but loss-of-function in type II are
highlighted in pink, whereas positions that are gain-of-function for type II but loss-of-function in type I are
highlighted in blue. (D) Dose-response curves for crizotinib and cabozantinib in Ba/F3 cells expressing
TPR-MET (full MET intracellular domain) harboring mutations at Y1093K and L1195M.

Identification of biophysical contributors to inhibitor-specific fitness landscapes using
machine learning

Machine learning models originally developed for predicting protein structure (Jumper et al., 2021; Rives
et al., 2021; Lin et al., 2023) have been adapted for predicting protein-ligand complexes (Bryant et al.,
2023), and predicting fitness values from DMS studies (Meier et al., 2021; Brandes et al., 2023; Jones et
al., 2020). In particular, protein language models have shown the ability to estimate the functional effects of
sequence variants in correlation with DMS data (Rives et al., 2021; Meier et al., 2021; Brandes et al.,
2023). We observed that ESM-1b, a protein language model (Rives et al., 2021), predicts the fitness of
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variants in the untreated/DMSO condition (correlation 0.50) much better than it does for the inhibitor treated
datasets (correlation 0.28). This difference in predictive ability is likely because the language model is
trained on sequences in the evolutionary record and fitness in the presence of inhibitors does not reflect a
pressure that has operated on evolutionary timescales.

To overcome this limitation and improve the predictive properties of the ESM approach, we sought to
augment the model with additional features that reflect the interactions between protein and inhibitors that
are not present in the evolutionary record (Chen and Guestrin, 2016). There are several challenges
associated with this task, including the narrow sequence space explored, high correlations between
datasets, and the limited chemical space explored by the 11 inhibitors. We used an XGBoost regressor
framework and designed a test-train-validation strategy to account for these issues (Figure 7A), exploring
many features representing conformation, stability, inhibitor-mutation distance, and inhibitor chemical
information (Figure 7 - Figure Supplement 1). To avoid overfitting, we introduced several constraints on
the monotonicity and the precision of certain features. The final model uses a subset of the features we
tested and improves the performance from 0.28 to 0.37 (Figure 7B,C). The model primarily improves the
correlation by shifting the distribution of predicted fitness values to center around drug sensitivity, reflecting
the pressures that are not accounted for by ESM-1b (Figure 7D). Nonetheless, many resistant mutations
are correctly predicted by the new model.

To examine whether the model could help interpret the mechanisms of specific mutations, we examined
several cases with notable improved predictions as the model increased in complexity (Figure 7E,F). For
some mutations, as in Y1230D, we observe a gradual improvement in prediction for each set of features,
suggesting that resistance relies on multiple factors. For other mutations, such as N1167K, we see a single
set of features driving the improvement, which suggests much more dominant driving forces. Lastly, in
other mutations, like G1290D, the models trained with different features can over or under predict the true
value, demonstrating the value of combining features together. The reliance on simple features helps
identify some of the major factors in drug resistance and sensitization such as distance to the inhibitor and
active/inactive conformation; however, improved feature engineering and coverage of both sequence and
chemical space will likely be needed to create a more interpretable model.
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Figure 7. Inhibitor-bound variant fitness predicted from a machine learning model trained on the
MET DMS dataset. (A) Model architecture outlining the information flow and inputs for model training,
validation, fitness predictions, and prediction tests. (B) Improvement in correlation between experimental
and predicted fitness for each inhibitor with usage of different kinds of features. (C) Cross-validation trends
between the baseline ESM model and the model with all features incorporated. (D) Scatter plots of
predictions versus experimental fitness scores of the baseline ESM model (top) compared to the model
with all features (bottom), with a dashed cross-graph line in red displayed. (E) Residue-level analysis of
feature significance in fitness predictions (ESM, stability, distance, conformation, all features). The Rosace
experimental score is shown as a red line. (F) Residues with improved predictions mapped on a
crizotinib-bound MET kinase domain (PDB 2WGJ). Predicted resistance mutations (dark purple) modeled
relative to the wild-type residue (pink).

Discussion

Tyrosine kinase inhibitors have revolutionized the treatment of many diseases, but the development of
resistance creates a significant challenge for long term efficacy. Many strategies, including sequential
dosing (Attwood et al., 2021; Recondo et al., 2020), are being explored to overcome resistance. Our
DMS of the MET receptor tyrosine kinase domain, performed against a panel of varying inhibitors offers a
framework for experimentally identifying resistance and sensitizing mutations in an activated kinase context
for different inhibitors. By massively screening the effect of a nearly comprehensive library of amino acid
mutations in the MET kinase domain against 11 inhibitors, some generalizable patterns emerged. In
concordance with the binding mode of both type I and II inhibitors, residues that commonly confer
resistance, or act as “hotspots,” were mapped to previously reported sites like D1228, Y1230, M1211,
G1163, and novel sites like I1084, L1140, L1142, T1261, and L1272. Annotation of hotspots also offers an
opportunity to inform inhibitor selection based on likelihood of cross-inhibitor resistance (Figure 5). For
instance, I1084 is a hotspot for type I and II inhibitors within our study that displayed wild-type sensitivity to
the type I½ inhibitor screened (Figure 5). Understanding positions with high resistance frequencies that are
distal from the ATP-binding site also offers a design opportunity for allosteric inhibitors that can target
cancer-associated and resistance-associated regions within the N- and C-lobe (Mingione et al., 2023).

Nevertheless, similar to its ability in identifying resistance for inhibitors, our parallel DMS also demonstrated
the ability to detect non-selective drugs, with the example of tivantinib. Despite being a proposed
MET-selective inhibitor, like several others, tivantinib failed clinical trials, and follow-up studies suggested
cytotoxicity and off-target binding as the culprit (Michieli and Di Nicolantonio, 2013; Basilico et al., 2013;
Katayama et al., 2013; Fujino et al., 2019) - a scenario that is not uncommon to antitumor drugs that do
not advance to the clinic (Lin et al., 2019). To this effect, the ability of DMS to differentiate between
selective compounds provides a unique prospect for developing inverse structure−activity relationships,
whereby varying protein sequence both inhibitor specificity and resistance can be learned.

Reported cancer mutations in databases such as OncoKB or cBioPortal are useful for patient data and
cancer type reporting (Suehnholz et al., 2024; Chakravarty et al., 2017; Cerami et al., 2012). A recent
analysis of these databases aided in annotation of mutations observed within patient populations (Pecci et
al., 2024). This study used pre-clinical models to examine a subset of these mutations and identified
sensitivities to multiple inhibitors and confirmed clinical responses of two rare driver mutations (H1094Y
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and F1200I) to elzovantinib, a type Ib inhibitor (Pecci et al., 2024). Their results are consistent with the
predictions of our DMS, illustrating the potential value of having a broad dictionary of inhibitor sensitivity
and resistance patterns.

Finally, a significant challenge of inhibitor screening is the considerable time and cost involved, even at
high-throughput. While docking has accelerated the prioritization of compounds for protein targeting and
screening in silico (Sadybekov and Katritch, 2023), prediction of drug resistance is of high interest in
informing iterative drug design. Screening for resistance in the early stages of drug design is particularly
useful for obtaining inhibitors that can be effective in the long-term by optimizing protein-inhibitor
interactions in the wildtype and functionally silent mutant context (Pisa and Kapoor, 2020). While
base-editor approaches can rapidly screen for inhibitor resistance mutations within full-length, endogenous
genes, undersampling of rare variants due to lower coverage is a significant caveat (Dorighi et al., 2024),
compared to DMS where nearly full coverage is achieved and controlled. A full landscape of mutational
effects can help to predict drug response and guide small molecule design to counteract acquired
resistance. The ideas motivating our ML-model, which combines protein language models and
biophysical/chemical features, to novel inhibitors could eventually be used to profile resistance and
sensitivity for novel and unscreened small molecules, greatly extending the scale of kinase inhibitor
repositioning for second-line therapies.

Materials and methods

Mammalian cell culturing

Ba/F3 cells (DSMZ) were maintained and passaged in 90% RPMI (Gibco), 10% HI-FBS (Gibco), 1%
penicillin/streptomycin (Gibco), and 10ng/ml IL-3 (Fisher), and incubated at 37°C with 5% CO2. Cells were
passaged at or below 1.0e6 cells/ml to avoid acquired IL-3 resistance, and regularly checked for IL-3
dependence by performing 3x PBS (Gibco) washes and outgrowth in the absence of IL-3.

Plat-E cells stably expressing retroviral envelope and packaging plasmids were originally gifted by Dr.
Wendell Lim, and maintained in 90% DMEM, HEPES (Gibco), 10% HI-FBS (Gibco), 1%
penicillin/streptomycin (Gibco), 10ug/ml blasticidin, 1ug/ml puromycin. Cells were cultured at 37°C with 5%
CO2 and maintained under blasticidin and puromycin antibiotic pressure unless being transfected.

Dose response and IC50 determination of inhibitors

Unless otherwise stated, all inhibitors used in this study were purchased from SelleckChem.

Ba/F3 cells stably expressing TPR-MET and TPR-METΔEx14 were washed with DPBS (Gibco) 3x times to
remove IL-3, puromycin, penicillin, and streptomycin. Cells were resuspended in 90% RPMI and 10% FBS,
and were seeded in the wells of a 96-well, round-bottom plate at a density of 2.5e4 cells/ml in 200ul. Cells
were incubated for 24hr to allow kinase-driven signaling. The next day, inhibitors were added to triplicate
rows of cells at a concentration range of 0 to 10uM (2-fold dilutions), and allowed to incubate for 72 hr post
TKI addition. CellTiter-Glo reagent (Promega) was mixed at a 1:1 ratio with cells to lyse and provide a
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luminescence readout, which was measured on a Veritas luminometer. Cell numbers were determined from
a Ba/F3 cell and ATP standard curve generated according to the manufacturer's instructions. Dose
response curves were fitted using GraphPad Prism with the log(inhibitor) vs. response, variable slope
function. Data are presented as cell viability normalized to the fold change from the TKI free control.

MET kinase domain variant library generation, cloning, and library introduction into Ba/F3

In this study, we repurposed cell lines transduced with TPR-MET and TPR-METΔEx14 kinase domain
variant libraries, previously reported in Estevam et al., 2024. All libraries were generated, transfected, and
tested in parallel.

In short, the MET kinase domain sequence used in this study spans amino acid positions 1059-1345, which
includes the full kinase domain (aa 1071-1345) and a small region of the juxtamembrane (aa 1059-1070).
The variant DNA library was synthesized by Twist Bioscience, containing one mammalian high-usage
codon per amino acid. A “fill-in” library was generated to introduce an early stop control codon every 11
amino acids evenly spaced across the sequence. In addition, mutations at positions with failed synthesis
(positions 1194 and 1278) were generated and added at equimolar concentration into the variant library.
The kinase domain variant library was introduced into two different cloning backbones, one carrying the
TPR-fusion sequence with the wild-type juxtamembrane sequence (aa 963-1058), wild-type C-terminal tail
(aa 1346-1390), and IRES-EGFP (pUC19_kozak-TPR-METΔEx14-IRES-EGFP) and the other carrying the
TPR-fusion sequence with an exon 14 skipped juxtamembrane sequence (aa 1010-1058), wild-type
C-terminal tail (aa 1346-1390), and IRES-mCherry (pUC19_kozak-TPR-MET-IRES-mCherry). The libraries
were transformed in MegaX 10 beta cells (Invitrogen), propagated in 50mL LB and Carbinacillin at 37°C to
an OD of 0.5, and then midiprepped (Zymo). Library coverage was determined by colony count of serial
dilutions from the recovery plated at varying dilutions (1:100, 1:1k, 1:10k, 1:100k, 1:1M).

The full TPR-METΔEx14-IRES-EGFP and TPR-MET-IRES-mCherry variant libraries were then shuttled
into the mammalian retroviral MSCV backbone (addgene) through restriction enzyme digest with MluI-HF
(NEB) and MfeI-HF (NEB), then ligated into the empty backbone with T4 ligase (NEB). Ligations were DNA
cleaned (Zymo), electroporated into ElectroMAX Stbl4 Competent Cells (Thermo Fisher), plated on
LB-agar bioassay plates with Carbenicillin, incubated at 37°C, then colonies were scraped into 50mL LB
and midi-prepped for transfections (Zymo).

Variant libraries were transfected into Plat-E cells for retroviral packaging using Lipofectamine3000
(Invitrogen) following the manufacturer's for a T-175 scale, and using a total of 46 μg DNA. 48 hr
post-transfection, the viral supernatant was harvested, passed through a 0.45 μm sterile filter, then
concentrated with Retro-X concentrator (TakaraBio) using a 1:4 ratio of concentrator to supernatant. The
concentrated virus was titered in Ba/F3 to determine the proper volume for a transduction MOI of 0.1-0.3.
The viral titer was calculated from the percent of fluorescent cells and viral dilution. To generate the DMS
transduced cell lines, 6 million cells were spinfected at an MOI of 0.1, in triplicate. Then infected cells were
selected with 1μg/ml puromycin in 4 days, with fluorescence and cell counts tracked each day.

DMS time point selection and sample preparation
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All screening conditions were performed and handled in parallel for TPR-MET and TPR-METΔEx14
libraries across all independent conditions and biological replicates.

For each biological replicate, a stock of 4.0e6 cells transduced with TPR-MET and TPR-METΔEx14 kinase
domain variants was thawed and expanded for 48 hrs in the presence of IL-3 and puromycin to prevent
pre-TKI selection to reach a density for screen seeding. Each batch of cells were grown to a density of 72
million cells to be split into 12 dishes (15cm) for each selection condition. Cells were first washed with
DPBS (Gibco) 3 times to remove IL-3 and antibiotics. Cells were resuspended in 90% RPMI and 10% FBS,
counted, and split across 12 dishes (15cm) at a density of 6 million cells in 30mL. A total of 6 million cells
from each replicate was harvested and pelleted at 250xg to serve as the “time point 0” pre-selection
sample (T0).

To begin selection of each replicate for each library, DMSO was added to the control plate (0.01% final)
while the appropriate IC50 concentration of inhibitor was added to each respective plate (independent pool
of cells). Three time points post T0 were collected for each library replicate and inhibitor condition for a total
of 4 time points (T0, T1, T2, T3). Time points were harvested every two doublings (~72hr) across 12 days;
6 million cells were harvested for each condition and pelleted at 250xg for 5min; 2.0e5 cells/ml were split at
every time point and maintained either in DMSO or TKI at the appropriate concentration to maintain cellular
growth rates under inhibitor selection.

The gDNA of each time point sample was isolated with the TakaraBio NucleoSpin Blood QuickPure kit the
same day the cells were harvested. gDNA was eluted in 50μl of elution buffer provided by the kit, using the
high concentration and high yield elution manufacturer's protocol. Immediately after gDNA was isolated,
5μg of gDNA was used for PCR amplification of the target MET KD gene to achieve the proper variant
coverage. A 150μl PCR master mix was prepared for each sample using the TakaraBio PrimeStar GXL
system according to the following recipe: 30μl 5X PrimeStar GXL buffer, 4.5μl 10μM forward primer (0.3uM
final), 4.5μl 10μM reverse primer (0.3uM final), 5μg gDNA, 12μl 10mM dNTPs (2.5mM each NTP), 6μl GXL
polymerase, nuclease free water to a final reaction volume of 150uL. The PCR master mix for each sample
was split into three PCR tubes with 50μl volumes for each condition and amplified with the following
thermocycler parameters: initial denaturation at 98°C for 30 s, followed by 24x cycles of denaturation at
98°C for 10 s, annealing at 60°C for 15 s, extension at 68°C for 14 s, and a final extension at 68°C for 1
min.

PCR samples were stored at -20°C until all time points and replicates were harvested and amplified, so as
to prepare all final samples for NGS together with the same handling and sequence them in the same pool
to prevent sequencing bias.

Library preparation and Next-generation sequencing

After all time points were selected, harvested, and PCR amplified, the target gene amplicon was isolated
from gDNA by gel purification (Zymo), for a total of 222 samples. The entire 150μl PCR reaction for each
sample was mixed with 1X NEB Purple Loading Dye (6X stock) and run on a 0.8% agarose, 1X TBE gel, at
100 mA until there was clear ladder separation and distinct amplicon bands. The target amplicons were gel
excised and purified with the Zymo Gel DNA Recovery kit. To remove excess agarose contamination, each
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sample was then further cleaned using the Zymo DNA Clean and Concentrator-5 kit and eluted in nuclease
free water. Amplicon DNA concentrations were then determined by Qubit dsDNA HS assay (Invitrogen).

Libraries were then prepared for deep sequencing using the Nextera XT DNA Library Prep kit in a 96-well
plate format (Illumina). Manufacturer’s instructions were followed for each step: tagmentation, indexing and
amplification, and clean up. Libraries were indexed using the IDT for Nextera Unique Dual Indexes Set A,B
and C (Illumina). Then, indexed libraries were quantified using the Agilent TapeStation with HS D5000
screen tape (Agilent) and reagents (Agilent). DNA concentrations were further confirmed with a Qubit
dsDNA HS assay (Invitrogen). All samples were manually normalized and pooled at 10nM (MET and
METΔEx14 in the same pool). The library was then paired-end sequenced (SP300) on two lanes of a
NovaSeq6000.

MET kinase domain variant analysis and scoring

Enrich2 Scoring

Our approach followed the one used for our initial MET DMS experiments [cite Met 1]. Sequencing files
were obtained from the sequencing core as demultiplexed fastq.gz files. The reads were first filtered for
contamination and adapters using BBDuk, then the paired reads were error-corrected and merged with
BBMerge and mapped to the reference sequence using BBMap (all from BBTools) [Bushnell, B. (2014).
BBTools software package.]. Read consequences were determined and counted using the
AnalyzeSaturationMutagenesis tool in GATK v4 (van der Auwera and O’Connor, 2020). This is further
processed by use of a script to filter out any variants that are not expected to be in the library (i.e., variants
due to errors in sequencing, amplification, etc). The final processed count files were then analyzed with
Enrich2, using weighted least squares and normalizing to wildtype sequences (SRA 28784151).

Rosace scoring

We used Rosace to analyze experiments of different conditions (DMSO or inhibitors) independently. In
order to make the scores more comparable and interpretable across conditions, we modified the original
Rosace software so that the output scores reflect the scale of cell doubling rate between every contiguous
time point. For example, in an ideal experiment, if the wild-type cell doubling rate is 2 and its score is 0 by
wild-type normalization, a score of -2 means that the cells are not growing (2^(2-2)) and a score of 1 means
that the cells are doubling three times (increasing to 2^(2+1) times the original count) between every
contiguous time point.

The input to Rosace is the filtered count files provided by the AnalyzeSaturationMutagenesis tool described
in the above section. From here, we filtered variants by the mean count (>= 4) and the proportion of 0 count
across replicates and time points (<= 10/12) and before inhibitor selection at T0 (<= 2/3). Second, we
normalized the counts using wild-type normalization with log2 transformation rather than the default natural
log transformation to maintain the doubling rate scale. Finally, the normalized count is regressed on time
intervals (t = {1, 2, 3, 4}) instead of the entire time span (t = {1/4, 2/4, 3/4, 4/4}) so that the resulting score
reflects the growth rate between every contiguous time point.
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Statistical filtering and resistance classification

In mathematical terms, we define the raw Rosace fitness scores of a mutation in DMSO as and in aβ
𝑣,𝐷𝑀𝑆𝑂

specific inhibitor condition as . The scores of wildtype variants were normalized to 0, and we denoteβ
𝑣,𝑖𝑛ℎ

them as and . Growth rate of wild-type cells under different inhibitor selections wereβ
𝑤𝑡,𝐷𝑀𝑆𝑂

= 0 β
𝑤𝑡,𝑖𝑛ℎ

= 0
controlled to be identical (two doublings between every time point), so even though raw Rosace scores are
computed independently per condition, are directly comparable between inhibitor conditions.β

𝑣,𝑖𝑛ℎ

Within one condition (DMSO or inhibitor), according to convention, we call variants with orβ
𝑣,𝑖𝑛ℎ

≫  0
“gain-of-function” and or “loss-of-function”. With scores from multipleβ

𝑣,𝐷𝑀𝑆𝑂
 ≫ 0 β

𝑣,𝑖𝑛ℎ
≪  0 β

𝑣,𝐷𝑀𝑆𝑂
 ≪ 0

conditions, we presented three types of filtering strategies and produced the following classification:
inhibitor-specific "resistance mutation", inhibitor-specific "resistance position", and "loss-of-function" and
"gain-of-function" mutation in the context of growth rate differential with and without an inhibitor.

We stress the different interpretations of “gain-of-function” and “loss-of-function” labels. Within one
condition, this label is a general term to describe whether the function of protein is perturbed by the
mutation. In contrast, the latter describes the difference with and without a given inhibitor, canceling effects
of folding, expression, and stability and targeting only the inhibitor sensitivity function of the protein.

A “resistance mutation” is specific to a certain inhibitor, and it satisfies the chained inequality
. The first inequality specifies that the growth rate of a resistant mutationβ

𝑣,𝑖𝑛ℎ
≫ β

𝑤𝑡,𝑖𝑛ℎ
= β

𝑤𝑡,𝐷𝑀𝑆𝑂
≥  β

𝑣,𝐷𝑀𝑆𝑂
needs to be much larger than that of the wild-type in the presence of the inhibitor, and we used the
one-sided statistical test with the test statistics cutoff 0.1. The second inequality specifies thatβ

𝑣,𝑖𝑛ℎ
 >  0. 5

in DMSO, the growth rate of that mutation is equal to or lower than that of the wild-type, ensuring that the
resistance behavior we see is specific to that inhibitor, not that it grows faster under every condition, and
thus we used the effect size cutoff .β

𝑣,𝐷𝑀𝑆𝑂 
≤  0

A “resistance position” is a position that contains at least one “resistance mutation” to a certain inhibitor.

In the context of growth rate differential with and without an inhibitor, a mutation is “gain-of-function” if it has
a higher growth rate in the presence of the inhibitor than in its absence, which is one feature of “resistance
mutation”. It is “loss-of-function” if it grows faster in the absence of the inhibitor. To label the mutations
accordingly, we first computed a recentered Rosace score for each mutation under inhibitor selection

, and define “gain-of-function” and “loss-of-function” in theγ
𝑣,𝑖𝑛ℎ

 = β
𝑣,𝑖𝑛ℎ

− β
𝑣,𝐷𝑀𝑆𝑂

γ
𝑣,𝑖𝑛ℎ

> 0. 75 γ
𝑣,𝑖𝑛ℎ

< 0
differential sensitivity analysis.

Machine learning modeling

Feature selection for the machine learning model

Interpretable features of the MET sequence variants and inhibitors were carefully chosen to be
incrementally added to a model. To extract structural features from inhibitor bound mutant complexes, we
used Umol to predict the structures of all the MET kinase variants bound to each of the inhibitors (Bryant
et al. 2023). The input to Umol is the MET kinase variant sequence, SMILES string of the inhibitor and list
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of residues lining the putative binding pocket. The predicted complexes (MET kinase bound to inhibitor)
were relaxed using OpenMM (Eastman et al. 2013). To ensure the inhibitor in the predicted structures are
in the same pose as compared to reference structures, we tethered the predicted inhibitor structure to the
reference pose using a modified version of the script available in
https://github.com/Discngine/rdkit_tethered_minimization. The reference pose for crizotinib, NVP-BVU972,
Merestenib and Savolitinib were taken from the corresponding crystal structures in the PDB - 2WGJ, 3QTI,
4EEV and 6SDE, while the reference pose for cabozantinib, capmantinib, glumetinib and glesatinib analog
were taken from the structures docked using Autodock Vina (see Kinase domain structural analysis).
Following this, the tethered inhibitors were redocked back to the predicted variant structures using
Autodock Vina (Eberhardt et al. 2021). We also extracted features from wild-type MET kinase structures.
The features could be broadly classified into four categories: inhibitor, stability, distance, conformation and
inhibitor binding. Apart from these, ESM Log Likelihood Ratio was used as a feature in all models that we
trained. Each of the feature categories that we explored and the rationale behind choosing them are
explained below:

(1) ESM Log Likelihood Ratio (ESM LLR)

ESM1b is an unsupervised protein language model trained on a large set of protein sequences from
UniProt that has successfully learned protein fitness patterns (Rives et al, 2021; Lin et al., 2023). By
including a mask token at a given position in the sequence, the log-likelihoods of all amino acid
substitutions can be extracted from the model. The ratio between ESM1b log-likelihoods for the mutant and
wildtype amino acids provides a score that indicates the fitness of each variant in the mutational scan, with
log-likelihood ratios having precedent as a variant predictor (Rives et al, 2021; Lin et al., 2023). The
predictions used here were obtained using esm-variants webserver
(https://huggingface.co/spaces/ntranoslab/esm_variants) (Brandes et al., 2023).

(2) Inhibitor features:
● Inhibitor molecular weight: We calculated the molecular weight of each inhibitor as a

feature.
● Ligand RMSD: We structurally superposed the predicted variant structure onto the

corresponding wildtype structure and calculated the RMSD between the predicted, re-docked
inhibitor and the reference inhibitor structure (Figure 7 - figure supplement 1J)

(3) Stability features:

● ∆∆∆G and ∆∆G: Because inhibitor types are largely distinguished based on binding
configuration, we reasoned that the difference in stability contributed by each mutation
between given binding states (e.g. Type I bound state vs. a Type II bound state) could
contribute to the success of the predictor. To compute the stability difference, we used
structural representatives for type-I bound (2WGJ) and type II bound (4EEV) MET kinase and
calculated the change in free energy (∆∆G) of every possible mutation at every position using
ThermoMPNN (Dieckhaus et al., 2023). The difference in ∆∆G between type-I bound and
type-II bound structures (∆∆∆G) for every variant was added as a feature to the XGBoost
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model to capture the difference in stabilization from the mutation in the Type I or Type II bound
state (Figure 7 - figure supplement 1C). We also used the predicted ∆∆G score of the
corresponding inhibitor type-bound structure directly as a feature. For instance, if the input
data corresponds to a mutation to Alanine at position 1065 in the presence of glumetinib (a
type I inhibitor), the difference between ∆∆G predicted for the 1065A variant for the type-I
bound (2WGJ) and for type II bound (4EEV) structure is used as a feature (∆∆∆G). The ∆∆G
predicted for the 1065A variant for the type-I bound (2WGJ) structure is also used as a
feature.

(4) Distance features:

● Residue to ATP distance: Proximity to the ATP-binding site indicates the ability of the given
residue to influence inhibitor binding given that Type I and Type II inhibitors are ATP
competitive. To include this feature, the distance between C-alpha residue atoms and the
centroid of bound ATP in a representative structure (PDB 3DKC) was calculated and the
distance corresponding to each position was added as a feature (Figure 7 - figure
supplement 1D).

● Inhibitor distance: This is the shortest distance between the inhibitor and mutated residue in
the predicted variant-inhibitor complexes. (Figure 7 - figure supplement 1G).

(5) Conformational features:

● MET crystal structure RMSF: The extent of flexibility at the mutation position could be
significantly affected by the mutation, which in turn can affect the function of the variant. To
account for this, we utilized the structural information abundantly available for MET kinases in
PDB. We structurally aligned all crystal structures of human MET kinases with resolution
better than 3Å (81 structures) using mTM-align (Dong et al., 2018) and calculated the Root
Mean Squared Fluctuation at every residue position using Prody (Zhang et al., 2021) (Figure
7 - figure supplement 1F).

● Residue RMSD: We structurally superposed the predicted variant structure onto the
corresponding wildtype structure and calculated the RMSD between the mutant and wildtype
residue at the mutation position (Figure 7 - figure supplement 1I)

(6) Inhibitor Binding features:
● RF-Score: To quantify the binding strength between the inhibitor and the variant protein

structure, we calculated the RF-score, which is a random forest-based approach to predict
protein-ligand binding affinity (Wójcikowski et al., 2017)

● Pocket volume, hydrophobicity score and polarity score: Changes to the binding pocket in
terms of volume and hydrophobicity due to mutations could affect the interaction and binding
between the inhibitor and variant. These effects were brought in as features into the model by
calculating the binding pocket volume, hydrophobicity score and polarity score of the binding
pocket using fpocket (Le Guilloux et al., 2009) (Figure 7 - figure supplement 1H).

This category of features are not part of the best performing model shown in Figure 7.
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Apart from these categories, we calculated the difference in volume between the wildtype and mutated
residue at a given position and added it as a feature (∆Volume) since residue volume changes upon
mutation could contribute to steric hindrance (Figure 7 - figure supplement 1E). This feature is also not
part of the best performing model.

This led to a total of 14 interpretable features to evaluate our models on. We trained and tested a total of
8192 models by considering all possible numbers and combinations of these features (keeping ESM LLR
as a constant feature in all models). The hyperparameter tuning, cross-validation, training and testing of
each of these models are described in detail below.

Training and Selecting the Predictive Model

An XGBoost regressor model, which is a gradient boosting method based on decision trees as the base
learner (Chen and Guestrin, 2016), was used to predict DMS fitness scores in presence of inhibitors.
Given the relatively small dataset we are using here, the models are prone to overfitting. Hence, we used
monotonic constraints on features that had a monotonic relationship with the experimental fitness scores.
ESM LLR score and ∆∆G have a positive and negative correlation with the experimental fitness scores
respectively (Figure 7 - figure supplement 1A). Therefore, ESM LLR was constrained positively and ∆∆G
was constrained negatively by assigning 1 and -1 respectively to the ‘monotone_constraints’ parameter in
Python XGBoost. This ensures that the monotonic relationship between the input feature and the target
value is maintained during predictions.To further prevent overfitting, we binned the values of the 12
remaining into four or five bins and assigned the median of the bin as their value. The bins were chosen
such that one or two bins would contain the majority of feature values. The distribution of these twelve
features are shown in Figure 7 - figure supplement 1B. The bins of each feature are shown as red
dashed lines on the histograms. Model performance was evaluated using Pearson’s R and mean squared
error (MSE).

Experimental fitness scores of MET variants in the presence of DMSO and AMG458 were ignored in model
training and testing since having just one set of data for a type I ½ inhibitor and DMSO leads to learning by
simply memorizing the inhibitor type, without generalizability. The remaining dataset was split into training
and test sets to further avoid overfitting (Figure 7A). The following data points were held out for testing - (a)
all mutations in the presence of one type I (crizotinib) and one type II (glesatinib analog) inhibitor, (b) 20%
of randomly chosen positions (columns) and (c) all mutations in two randomly selected amino acids (rows)
(e.g. all mutations to Phe, Ser). After splitting the dataset into train and test sets, the train set was used for
XGBoost hyperparameter tuning and cross-validation. For tuning the hyperparameters of each of the
XGBoost models, we held out 20% of randomly sampled data points in the training set and used the
remaining 80% data for Bayesian hyperparameter optimization of the models with Optuna (Akiba et al.,
2019), with an objective to minimize the mean squared error between the fitness predictions on 20% held
out split and the corresponding experimental fitness scores. The following hyperparameters were sampled
and tuned: type of booster (booster - gbtree or dart), maximum tree depth (max_depth), number of trees
(n_estimators), learning rate (eta), minimum leaf split loss (gamma), subsample ratio of columns when
constructing each tree (colsample_bytree), L1 and L2 regularization terms (alpha and beta) and tree growth
policy (grow_policy - depthwise or lossguide). After identifying the best combination of hyperparameters for
each of the models, we performed 10-fold cross validation (with re-sampling) of the models on the full
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training set. The training set consists of data points corresponding to 230 positions and 18 amino acids. We
split these into 10 parts such that each part corresponds to data from 23 positions and 2 amino acids.
Then, at each of 10 iterations of cross-validation, models were trained on 9 of 10 parts (207 positions and
16 amino acids) and evaluated on the 1 held out part (23 positions and 2 amino acids). Through this
protocol we ensure that we evaluate performance of the models with different subsets of positions and
amino acids. The average Pearson correlation and mean squared error of the models from these 10
iterations were calculated and the best performing model out of 8192 models was chosen as the one with
the highest cross-validation correlation. The final XGBoost models were obtained by training on the full
training set and also used to obtain the fitness score predictions for the validation and test sets. These
predictions were used to calculate the inhibitor-wise correlations shown in Figure 7B.

Kinase domain structural analysis

Unless otherwise stated, all structural analysis was performed on PyMOL. Structural mapping incorporated
tools from the Bio3D bioinformatics package in R (Grant et al., 2006). Inhibitors that lacked an
experimental crystal structure were docked into a representative type I (2WGJ) or type II (4EEV) structure
with AutoDock Vina (Eberhardt et al., 2021). Existing ligands in both the structures were removed in silico
and the proteins prepared for docking using AutoDockTools by adding polar hydrogens and Kollman
charges. The inhibitors were also prepared using AutoDockTools by adding polar hydrogens and charges
and identifying rotatable torsions. A grid box which dictates the search space for the docking tool was
defined approximately around the region where the existing ligands in 2WGJ and 4EEV were bound. The
energy range and exhaustiveness of docking was set to 3 and 8 respectively. AutoDock Vina was made to
output 5 modes for each ligand. Capmatenib and glumetinib (type I inhibitors) were docked on to 2WGJ
and glesatinib analog and cabozantinib (type II inhibitors) were docked on to 4EEV.
Acknowledgements

Sequencing was performed at the UCSF CAT, supported by UCSF PBBR, RRP IMIA, and NIH
1S10OD028511-01 grants. This work was supported by NIH CA239604 to EAC, NJ, JSF; HHMI Hanna
Gray Fellowship and UCSF QBI Fellow program to WCM; NIH R01LM013434 to JAC; NIH GM145238 and
the UCSF Program for Breakthrough Biomedical Research, funded in part by the Sandler Foundation, to
JSF.

Author contributions
Conceptualization JSF, NJ, EAC; Methodology, GOE, EML, JR, CBM; Formal analysis, GOE; Writing –
Original Draft, GOE and JSF; Writing – Editing, GOE, JSF, EML, NJ, EAC; Validation, GOE, EML; Machine
learning, AR, KC; Funding Acquisition, JSF, NJ, EAC; Resources, JSF, NJ, EA, WCM, HP; Supervision,
JSF, NJ, EAC, WMC, EML, HP, JAC.

Competing Interests

JSF is a consultant for, has equity in, and receives research support from Relay Therapeutics and is a
consultant for Octant Bio. N.J. is a founder of Rezo Therapeutics and a shareholder of Rezo Therapeutics,
Sudo Therapeutics, and type6 Therapeutics. N.J. is a SAB member of Sudo Therapeutics, type6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Therapeutic and NIBR Oncology. The Jura laboratory has received sponsored research support from
Genentech, Rezo Therapeutics and type6 Therapeutics. E.A.C. is a consultant at IHP Therapeutics, Valar
Labs, Tatara Therapeutics and Pear Diagnostics, reports receiving commercial research grants from Pfizer,
and has stock ownership in Tatara Therapeutics, HDT Bio, Clara Health, Aqtual, and Guardant Health.

Code and data availability

The sequencing data has been deposited at the NCBI SRA (28784151). Original data files, analysis, and
source code is available at https://github.com/fraser-lab/MET_kinase_Inhibitor_DMS

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter
Optimization Framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2623–2631. https://doi.org/10.48550/arXiv.1907.10902

An, L., Wang, Y., Wu, G., Wang, Z., Shi, Z., Liu, C., Wang, C., Yi, M., Niu, C., Duan, S., Li, X., Tang, W.,
Wu, K., Chen, S., & Xu, H. (2023). Defining the sensitivity landscape of EGFR variants to tyrosine kinase
inhibitors. Translational Research, 255, 14–25. https://doi.org/10.1016/j.trsl.2022.11.002

Arter, C., Trask, L., Ward, S., Yeoh, S., & Bayliss, R. (2022). Structural features of the protein kinase
domain and targeted binding by small-molecule inhibitors. Journal of Biological Chemistry, 298(8), 102247.
https://doi.org/10.1016/j.jbc.2022.102247

Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S., & Schiöth, H. B. (2021). Trends in kinase drug
discovery: Targets, indications and inhibitor design. Nature Reviews Drug Discovery, 20(11), Article 11.
https://doi.org/10.1038/s41573-021-00252-y

Auwera, G. van der, & O’Connor, B. D. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in
Terra. O’Reilly Media, Incorporated.

Bahcall, M., Paweletz, C. P., Kuang, Y., Taus, L. J., Sim, T., Kim, N. D., Dholakia, K. H., Lau, C. J., Gokhale,
P. C., Chopade, P. R., Hong, F., Wei, Z., Köhler, J., Kirschmeier, P. T., Guo, J., Guo, S., Wang, S., & Jänne,
P. A. (2022). Combination of Type I and Type II MET Tyrosine Kinase Inhibitors as Therapeutic Approach to
Prevent Resistance. Molecular Cancer Therapeutics, 21(2), 322–335.
https://doi.org/10.1158/1535-7163.MCT-21-0344

Bahcall, M., Sim, T., Paweletz, C. P., Patel, J. D., Alden, R. S., Kuang, Y., Sacher, A. G., Kim, N. D., Lydon,
C. A., Awad, M. M., Jaklitsch, M. T., Sholl, L. M., Jänne, P. A., & Oxnard, G. R. (2016). Acquired MET
D1228V Mutation and Resistance to MET Inhibition in Lung Cancer. Cancer Discovery, 6(12), 1334–1341.
https://doi.org/10.1158/2159-8290.CD-16-0686

Basilico, C., Pennacchietti, S., Vigna, E., Chiriaco, C., Arena, S., Bardelli, A., Valdembri, D., Serini, G., &
Michieli, P. (2013). Tivantinib (ARQ197) Displays Cytotoxic Activity That Is Independent of Its Ability to Bind
MET. Clinical Cancer Research, 19(9), 2381–2392. https://doi.org/10.1158/1078-0432.CCR-12-3459

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://github.com/fraser-lab/MET_kinase_Inhibitor_DMS
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.1016/j.trsl.2022.11.002
https://doi.org/10.1016/j.jbc.2022.102247
https://doi.org/10.1016/j.jbc.2022.102247
https://doi.org/10.1038/s41573-021-00252-y
https://doi.org/10.1038/s41573-021-00252-y
https://doi.org/10.1158/1535-7163.MCT-21-0344
https://doi.org/10.1158/1535-7163.MCT-21-0344
https://doi.org/10.1158/2159-8290.CD-16-0686
https://doi.org/10.1158/2159-8290.CD-16-0686
https://doi.org/10.1158/1078-0432.CCR-12-3459
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Brandes, N., Goldman, G., Wang, C. H., Ye, C. J., & Ntranos, V. (2023). Genome-wide prediction of
disease variant effects with a deep protein language model. Nature Genetics, 55(9), Article 9.
https://doi.org/10.1038/s41588-023-01465-0

Brazel, D., Zhang, S., & Nagasaka, M. (2022). Spotlight on Tepotinib and Capmatinib for Non-Small Cell
Lung Cancer with MET Exon 14 Skipping Mutation. Lung Cancer: Targets and Therapy, 13, 33–45.
https://doi.org/10.2147/LCTT.S360574

Brenan, L., Andreev, A., Cohen, O., Pantel, S., Kamburov, A., Cacchiarelli, D., Persky, N. S., Zhu, C.,
Bagul, M., Goetz, E. M., Burgin, A. B., Garraway, L. A., Getz, G., Mikkelsen, T. S., Piccioni, F., Root, D. E.,
& Johannessen, C. M. (2016). Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2
Missense Mutants. Cell Reports, 17(4), 1171–1183. https://doi.org/10.1016/j.celrep.2016.09.061

Bryant, P., Kelkar, A., Guljas, A., Clementi, C., & Noé, F. (2023). Structure prediction of protein-ligand
complexes from sequence information with Umol (p. 2023.11.03.565471). bioRxiv.
https://doi.org/10.1101/2023.11.03.565471

Cai, B., Li, X., Huang, X., Ma, T., Qu, B., Yu, W., Yang, W., Zhang, P., Chen, J., & Liu, F. (2021). Case
Report: Sequential Combination Targeted Therapy With Type I and II MET Inhibitors in a Metastatic
EGFR-Mutated, MET-Amplified NSCLC Patient With Acquired MET Y1230H Mutation. Frontiers in
Oncology, 11. https://www.frontiersin.org/articles/10.3389/fonc.2021.738832

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J.,
Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio
Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer
Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

Chakraborty, S., Ahler, E., Simon, J. J., Fang, L., Potter, Z. E., Sitko, K. A., Stephany, J. J., Guttman, M.,
Fowler, D. M., & Maly, D. J. (2023). Profiling of drug resistance in Src kinase at scale uncovers a regulatory
network coupling autoinhibition and catalytic domain dynamics. Cell Chemical Biology.
https://doi.org/10.1016/j.chembiol.2023.08.005

Chakravarty, D., Gao, J., Phillips, S., Kundra, R., Zhang, H., Wang, J., Rudolph, J. E., Yaeger, R.,
Soumerai, T., Nissan, M. H., Chang, M. T., Chandarlapaty, S., Traina, T. A., Paik, P. K., Ho, A. L., Hantash,
F. M., Grupe, A., Baxi, S. S., Callahan, M. K., … Schultz, N. (2017). OncoKB: A Precision Oncology
Knowledge Base. JCO Precision Oncology, 1, 1–16. https://doi.org/10.1200/PO.17.00011
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
https://doi.org/10.1145/2939672.2939785

Cohen, P., Cross, D., & Jänne, P. A. (2021). Kinase drug discovery 20 years after imatinib: Progress and
future directions. Nature Reviews Drug Discovery, 20(7), Article 7.
https://doi.org/10.1038/s41573-021-00195-4

Cooper, C. S., Park, M., Blair, D. G., Tainsky, M. A., Huebner, K., Croce, C. M., & Vande Woude, G. F.
(1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line.
Nature, 311(5981), 29–33. https://doi.org/10.1038/311029a0

Cui, J. J. (2014). Targeting Receptor Tyrosine Kinase MET in Cancer: Small Molecule Inhibitors and
Clinical Progress. Journal of Medicinal Chemistry, 57(11), 4427–4453. https://doi.org/10.1021/jm401427c

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1038/s41588-023-01465-0
https://doi.org/10.1038/s41588-023-01465-0
https://doi.org/10.2147/LCTT.S360574
https://doi.org/10.2147/LCTT.S360574
https://doi.org/10.1016/j.celrep.2016.09.061
https://doi.org/10.1101/2023.11.03.565471
https://doi.org/10.1101/2023.11.03.565471
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1016/j.chembiol.2023.08.005
https://doi.org/10.1016/j.chembiol.2023.08.005
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/s41573-021-00195-4
https://doi.org/10.1038/s41573-021-00195-4
https://doi.org/10.1038/311029a0
https://doi.org/10.1021/jm401427c
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Cui, J. J., Tran-Dubé, M., Shen, H., Nambu, M., Kung, P.-P., Pairish, M., Jia, L., Meng, J., Funk, L.,
Botrous, I., McTigue, M., Grodsky, N., Ryan, K., Padrique, E., Alton, G., Timofeevski, S., Yamazaki, S., Li,
Q., Zou, H., … Edwards, M. P. (2011). Structure Based Drug Design of Crizotinib (PF-02341066), a Potent
and Selective Dual Inhibitor of Mesenchymal–Epithelial Transition Factor (c-MET) Kinase and Anaplastic
Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 54(18), 6342–6363.
https://doi.org/10.1021/jm2007613

Daley, G. Q., & Baltimore, D. (1988). Transformation of an interleukin 3-dependent hematopoietic cell line
by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proceedings of the National Academy
of Sciences, 85(23), 9312–9316. https://doi.org/10.1073/pnas.85.23.9312

Dieckhaus, H., Brocidiacono, M., Randolph, N., & Kuhlman, B. (2023). Transfer learning to leverage larger
datasets for improved prediction of protein stability changes (p. 2023.07.27.550881). bioRxiv.
https://doi.org/10.1101/2023.07.27.550881

Diedrich, K., Krause, B., Berg, O., & Rarey, M. (2023). PoseEdit: Enhanced ligand binding mode
communication by interactive 2D diagrams. Journal of Computer-Aided Molecular Design, 37(10),
491–503. https://doi.org/10.1007/s10822-023-00522-4

Dong, R., Peng, Z., Zhang, Y., & Yang, J. (2018). mTM-align: An algorithm for fast and accurate multiple
protein structure alignment. Bioinformatics, 34(10), 1719–1725.
https://doi.org/10.1093/bioinformatics/btx828

Dorighi, K. M., Zhu, A., Fortin, J.-P., Lo, J. H.-H., Sudhamsu, J., Wendorff, T. J., Durinck, S., Callow, M.,
Foster, S. A., & Haley, B. (2024). Accelerated drug-resistant variant discovery with an enhanced, scalable
mutagenic base editor platform. Cell Reports, 43(6). https://doi.org/10.1016/j.celrep.2024.114313

Duplaquet, L., Kherrouche, Z., Baldacci, S., Jamme, P., Cortot, A. B., Copin, M.-C., & Tulasne, D. (2018).
The multiple paths towards MET receptor addiction in cancer. Oncogene, 37(24), 3200–3215.
https://doi.org/10.1038/s41388-018-0185-4

Eastman, P., Friedrichs, M. S., Chodera, J. D., Radmer, R. J., Bruns, C. M., Ku, J. P., Beauchamp, K. A.,
Lane, T. J., Wang, L.-P., Shukla, D., Tye, T., Houston, M., Stich, T., Klein, C., Shirts, M. R., & Pande, V. S.
(2013). OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance
Molecular Simulation. Journal of Chemical Theory and Computation, 9(1), 461–469.
https://doi.org/10.1021/ct300857j

Eathiraj, S., Palma, R., Volckova, E., Hirschi, M., France, D. S., Ashwell, M. A., & Chan, T. C. K. (2011).
Discovery of a Novel Mode of Protein Kinase Inhibition Characterized by the Mechanism of Inhibition of
Human Mesenchymal-epithelial Transition Factor (c-Met) Protein Autophosphorylation by ARQ 197.
Journal of Biological Chemistry, 286(23), 20666–20676. https://doi.org/10.1074/jbc.M110.213801

Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking
Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling,
61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Elizabeth A. Tovar, & Graveel, C. R. (2017). MET in human cancer: Germline and somatic mutations.
Annals of Translational Medicine, 5(10), 205–205. https://doi.org/10.21037/atm.2017.03.64

Estevam, G. O., Linossi, E. M., Macdonald, C. B., Espinoza, C. A., Michaud, J. M., Coyote-Maestas, W.,
Collisson, E. A., Jura, N., & Fraser, J. S. (2024). Conserved regulatory motifs in the juxtamembrane domain

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1021/jm2007613
https://doi.org/10.1021/jm2007613
https://doi.org/10.1073/pnas.85.23.9312
https://doi.org/10.1101/2023.07.27.550881
https://doi.org/10.1101/2023.07.27.550881
https://doi.org/10.1007/s10822-023-00522-4
https://doi.org/10.1093/bioinformatics/btx828
https://doi.org/10.1093/bioinformatics/btx828
https://doi.org/10.1016/j.celrep.2024.114313
https://doi.org/10.1038/s41388-018-0185-4
https://doi.org/10.1038/s41388-018-0185-4
https://doi.org/10.1021/ct300857j
https://doi.org/10.1021/ct300857j
https://doi.org/10.1074/jbc.M110.213801
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.21037/atm.2017.03.64
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain
(p. 2023.08.03.551866). bioRxiv. https://doi.org/10.1101/2023.08.03.551866

Fernandes, M., Jamme, P., Cortot, A. B., Kherrouche, Z., & Tulasne, D. (2021). When the MET receptor
kicks in to resist targeted therapies. Oncogene, 40(24), 4061–4078.
https://doi.org/10.1038/s41388-021-01835-0

Frampton, G. M., Ali, S. M., Rosenzweig, M., Chmielecki, J., Lu, X., Bauer, T. M., Akimov, M., Bufill, J. A.,
Lee, C., Jentz, D., Hoover, R., Ou, S.-H. I., Salgia, R., Brennan, T., Chalmers, Z. R., Jaeger, S., Huang, A.,
Elvin, J. A., Erlich, R., … Miller, V. A. (2015). Activation of MET via Diverse Exon 14 Splicing Alterations
Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors. Cancer Discovery, 5(8),
850–859. https://doi.org/10.1158/2159-8290.CD-15-0285

Fujino, T., Kobayashi, Y., Suda, K., Koga, T., Nishino, M., Ohara, S., Chiba, M., Shimoji, M., Tomizawa, K.,
Takemoto, T., & Mitsudomi, T. (2019). Sensitivity and Resistance of MET Exon 14 Mutations in Lung
Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro. Journal of Thoracic Oncology, 14(10), 1753–1765.
https://doi.org/10.1016/j.jtho.2019.06.023

Fujino, T., Suda, K., Koga, T., Hamada, A., Ohara, S., Chiba, M., Shimoji, M., Takemoto, T., Soh, J., &
Mitsudomi, T. (2022). Foretinib can overcome common on-target resistance mutations after
capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. Journal of Hematology &
Oncology, 15(1), 79. https://doi.org/10.1186/s13045-022-01299-z

Fujino, T., Suda, K., & Mitsudomi, T. (2021). Lung Cancer with MET exon 14 Skipping Mutation: Genetic
Feature, Current Treatments, and Future Challenges. Lung Cancer: Targets and Therapy, 12, 35–50.
https://doi.org/10.2147/LCTT.S269307

Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R
package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696.
https://doi.org/10.1093/bioinformatics/btl461

Guérin, C. M., Vinchent, A., Fernandes, M., Damour, I., Laratte, A., Tellier, R., Estevam, G. O., Meneboo,
J.-P., Villenet, C., Descarpentries, C., Fraser, J. S., Figeac, M., Cortot, A. B., Rouleau, E., & Tulasne, D.
(2023). MET variants with activating N-lobe mutations identified in hereditary papillary renal cell carcinomas
still require ligand stimulation (p. 2023.11.03.565283). bioRxiv. https://doi.org/10.1101/2023.11.03.565283

Jones, E. M., Lubock, N. B., Venkatakrishnan, A., Wang, J., Tseng, A. M., Paggi, J. M., Latorraca, N. R.,
Cancilla, D., Satyadi, M., Davis, J. E., Babu, M. M., Dror, R. O., & Kosuri, S. (2020). Structural and
functional characterization of G protein–coupled receptors with deep mutational scanning. eLife, 9, e54895.
https://doi.org/10.7554/eLife.54895

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates,
R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A.,
Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873), Article 7873.
https://doi.org/10.1038/s41586-021-03819-2

Katayama, R., Aoyama, A., Yamori, T., Qi, J., Oh-hara, T., Song, Y., Engelman, J. A., & Fujita, N. (2013).
Cytotoxic Activity of Tivantinib (ARQ 197) Is Not Due Solely to c-MET Inhibition. Cancer Research, 73(10),
3087–3096. https://doi.org/10.1158/0008-5472.CAN-12-3256

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551866
https://doi.org/10.1038/s41388-021-01835-0
https://doi.org/10.1038/s41388-021-01835-0
https://doi.org/10.1158/2159-8290.CD-15-0285
https://doi.org/10.1016/j.jtho.2019.06.023
https://doi.org/10.1016/j.jtho.2019.06.023
https://doi.org/10.1186/s13045-022-01299-z
https://doi.org/10.2147/LCTT.S269307
https://doi.org/10.2147/LCTT.S269307
https://doi.org/10.1101/2023.11.03.565283
https://doi.org/10.7554/eLife.54895
https://doi.org/10.7554/eLife.54895
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1158/0008-5472.CAN-12-3256
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Koga, T., Suda, K., & Mitsudomi, T. (2022). Utility of the Ba/F3 cell system for exploring on-target
mechanisms of resistance to targeted therapies for lung cancer. Cancer Science, 113(3), 815–827.
https://doi.org/10.1111/cas.15263

Le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket
detection. BMC Bioinformatics, 10(1), 168. https://doi.org/10.1186/1471-2105-10-168

Li, A., Yang, J., Zhang, X., Zhang, Z., Su, J., Gou, L., Bai, Y., Zhou, Q., Yang, Z., Han-Zhang, H., Zhong,
W.-Z., Chuai, S., Zhang, Q., Xie, Z., Gao, H., Chen, H., Wang, Z., Wang, Z., Yang, X., … Wu, Y. (2017).
Acquired MET Y1248H and D1246N Mutations Mediate Resistance to MET Inhibitors in Non–Small Cell
Lung Cancer. Clinical Cancer Research, 23(16), 4929–4937.
https://doi.org/10.1158/1078-0432.CCR-16-3273

Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L., Sausville, E. L., Lukow, D.
A., Liu, L., Chait, A. R., Galluzzo, Z. C., Tucker, C., & Sheltzer, J. M. (2019). Off-target toxicity is a common
mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509),
eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos
Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., & Rives, A. (2023). Evolutionary-scale
prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123–1130.
https://doi.org/10.1126/science.ade2574

Lu, X., Peled, N., Greer, J., Wu, W., Choi, P., Berger, A. H., Wong, S., Jen, K.-Y., Seo, Y., Hann, B., Brooks,
A., Meyerson, M., & Collisson, E. A. (2017). MET Exon 14 Mutation Encodes an Actionable Therapeutic
Target in Lung Adenocarcinoma. Cancer Research, 77(16), 4498–4505.
https://doi.org/10.1158/0008-5472.CAN-16-1944

Ma, P. C., Kijima, T., Maulik, G., Fox, E. A., Sattler, M., Griffin, J. D., Johnson, B. E., & Salgia, R. (2003).
c-MET Mutational Analysis in Small Cell Lung Cancer: Novel Juxtamembrane Domain Mutations
Regulating Cytoskeletal Functions1. Cancer Research, 63(19), 6272–6281.

Mak, H. H. L., Peschard, P., Lin, T., Naujokas, M. A., Zuo, D., & Park, M. (2007). Oncogenic activation of
the Met receptor tyrosine kinase fusion protein, Tpr–Met, involves exclusion from the endocytic degradative
pathway. Oncogene, 26(51), 7213–7221. https://doi.org/10.1038/sj.onc.1210522

Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., & Rives, A. (2021). Language models enable zero-shot
prediction of the effects of mutations on protein function (p. 2021.07.09.450648). bioRxiv.
https://doi.org/10.1101/2021.07.09.450648

Michaelides, I. N., Collie, G. W., Börjesson, U., Vasalou, C., Alkhatib, O., Barlind, L., Cheung, T., Dale, I. L.,
Embrey, K. J., Hennessy, E. J., Khurana, P., Koh, C. M., Lamb, M. L., Liu, J., Moss, T. A., O’Neill, D. J.,
Phillips, C., Shaw, J., Snijder, A., … Yang, W. (2023). Discovery and Optimization of the First ATP
Competitive Type-III c-MET Inhibitor. Journal of Medicinal Chemistry, 66(13), 8782–8807.
https://doi.org/10.1021/acs.jmedchem.3c00401

Michieli, P., & Di Nicolantonio, F. (2013). Tivantinib—A cytotoxic drug in MET inhibitor’s clothes? Nature
Reviews Clinical Oncology, 10(7), Article 7. https://doi.org/10.1038/nrclinonc.2013.86

Mingione, V. R., Paung, Y., Outhwaite, I. R., & Seeliger, M. A. (2023). Allosteric regulation and inhibition of
protein kinases. Biochemical Society Transactions, 51(1), 373–385. https://doi.org/10.1042/BST20220940

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1111/cas.15263
https://doi.org/10.1186/1471-2105-10-168
https://doi.org/10.1158/1078-0432.CCR-16-3273
https://doi.org/10.1158/1078-0432.CCR-16-3273
https://doi.org/10.1126/scitranslmed.aaw8412
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1158/0008-5472.CAN-16-1944
https://doi.org/10.1158/0008-5472.CAN-16-1944
https://doi.org/10.1101/2021.07.09.450648
https://doi.org/10.1101/2021.07.09.450648
https://doi.org/10.1021/acs.jmedchem.3c00401
https://doi.org/10.1021/acs.jmedchem.3c00401
https://doi.org/10.1038/nrclinonc.2013.86
https://doi.org/10.1042/BST20220940
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Munshi, N., Jeay, S., Li, Y., Chen, C.-R., France, D. S., Ashwell, M. A., Hill, J., Moussa, M. M., Leggett, D.
S., & Li, C. J. (2010). ARQ 197, a Novel and Selective Inhibitor of the Human c-Met Receptor Tyrosine
Kinase with Antitumor Activity. Molecular Cancer Therapeutics, 9(6), 1544–1553.
https://doi.org/10.1158/1535-7163.MCT-09-1173

Pal, K., Bandyopadhyay, A., Zhou, X. E., Xu, Q., Marciano, D. P., Brunzelle, J. S., Yerrum, S., Griffin, P. R.,
Vande Woude, G., Melcher, K., & Xu, H. E. (2017). Structural Basis of TPR-Mediated Oligomerization and
Activation of Oncogenic Fusion Kinases. Structure, 25(6), 867-877.e3.
https://doi.org/10.1016/j.str.2017.04.015

Park, M., Dean, M., Cooper, C. S., Schmidt, M., O’Brien, S. J., Blair, D. G., & Vande Woude, G. F. (1986).
Mechanism of met oncogene activation. Cell, 45(6), 895–904.
https://doi.org/10.1016/0092-8674(86)90564-7

Pecci, F., Nakazawa, S., Ricciuti, B., Harada, G., Lee, J. K., Alessi, J. V., Barrichello, A., Vaz, V. R.,
Lamberti, G., Di Federico, A., Gandhi, M. M., Gazgalis, D., Feng, W. W., Jiang, J., Baldacci, S., Locquet,
M.-A., Gottlieb, F. H., Chen, M. F., Lee, E., … Awad, M. M. (2024). Activating Point Mutations in the MET
Kinase Domain Represent a Unique Molecular Subset of Lung Cancer and Other Malignancies Targetable
with MET Inhibitors. Cancer Discovery, OF1–OF17. https://doi.org/10.1158/2159-8290.CD-23-1217

Persky, N. S., Hernandez, D., Do Carmo, M., Brenan, L., Cohen, O., Kitajima, S., Nayar, U., Walker, A.,
Pantel, S., Lee, Y., Cordova, J., Sathappa, M., Zhu, C., Hayes, T. K., Ram, P., Pancholi, P., Mikkelsen, T.
S., Barbie, D. A., Yang, X., … Johannessen, C. M. (2020). Defining the landscape of ATP-competitive
inhibitor resistance residues in protein kinases. Nature Structural & Molecular Biology, 27(1), 92–104.
https://doi.org/10.1038/s41594-019-0358-z

Peschard, P., Fournier, T. M., Lamorte, L., Naujokas, M. A., Band, H., Langdon, W. Y., & Park, M. (2001).
Mutation of the c-Cbl TKB Domain Binding Site on the Met Receptor Tyrosine Kinase Converts It into a
Transforming Protein. Molecular Cell, 8(5), 995–1004. https://doi.org/10.1016/S1097-2765(01)00378-1

Rao, J., Xin, R., Macdonald, C., Howard, M. K., Estevam, G. O., Yee, S. W., Wang, M., Fraser, J. S.,
Coyote-Maestas, W., & Pimentel, H. (2024). Rosace: A robust deep mutational scanning analysis
framework employing position and mean-variance shrinkage. Genome Biology, 25(1), 138.
https://doi.org/10.1186/s13059-024-03279-7

Recondo, G., Bahcall, M., Spurr, L. F., Che, J., Ricciuti, B., Leonardi, G. C., Lo, Y.-C., Li, Y. Y., Lamberti, G.,
Nguyen, T., Milan, M. S. D., Venkatraman, D., Umeton, R., Paweletz, C. P., Albayrak, A., Cherniack, A. D.,
Price, K. S., Fairclough, S. R., Nishino, M., … Awad, M. M. (2020). Molecular Mechanisms of Acquired
Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14–Mutant NSCLC. Clinical
Cancer Research, 26(11), 2615–2625. https://doi.org/10.1158/1078-0432.CCR-19-3608

Recondo, G., Che, J., Jänne, P. A., & Awad, M. M. (2020). Targeting MET Dysregulation in Cancer. Cancer
Discovery, 10(7), 922–934. https://doi.org/10.1158/2159-8290.CD-19-1446

Recondo, G., Facchinetti, F., Olaussen, K. A., Besse, B., & Friboulet, L. (2018). Making the first move in
EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nature Reviews Clinical
Oncology, 15(11), 694–708. https://doi.org/10.1038/s41571-018-0081-4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1158/1535-7163.MCT-09-1173
https://doi.org/10.1158/1535-7163.MCT-09-1173
https://doi.org/10.1016/j.str.2017.04.015
https://doi.org/10.1016/0092-8674(86)90564-7
https://doi.org/10.1158/2159-8290.CD-23-1217
https://doi.org/10.1038/s41594-019-0358-z
https://doi.org/10.1186/s13059-024-03279-7
https://doi.org/10.1186/s13059-024-03279-7
https://doi.org/10.1158/1078-0432.CCR-19-3608
https://doi.org/10.1158/2159-8290.CD-19-1446
https://doi.org/10.1038/s41571-018-0081-4
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., & Fergus, R.
(2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein
sequences. Proceedings of the National Academy of Sciences, 118(15), e2016239118.
https://doi.org/10.1073/pnas.2016239118

Rodrigues, G. A., & Park, M. (1993). Dimerization mediated through a leucine zipper activates the
oncogenic potential of the met receptor tyrosine kinase. Molecular and Cellular Biology, 13(11), 6711–6722.

Rubin, A. F., Gelman, H., Lucas, N., Bajjalieh, S. M., Papenfuss, A. T., Speed, T. P., & Fowler, D. M. (2017).
A statistical framework for analyzing deep mutational scanning data. Genome Biology, 18(1), 150.
https://doi.org/10.1186/s13059-017-1272-5

Sadybekov, A. V., & Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature,
616(7958), Article 7958. https://doi.org/10.1038/s41586-023-05905-z

Santarpia, M., Massafra, M., Gebbia, V., D’Aquino, A., Garipoli, C., Altavilla, G., & Rosell, R. (2021). A
narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations.
Translational Lung Cancer Research, 10(3). https://doi.org/10.21037/tlcr-20-1113

Smyth, E. C., Sclafani, F., & Cunningham, D. (2014). Emerging molecular targets in oncology: Clinical
potential of MET/hepatocyte growth-factor inhibitors. OncoTargets and Therapy, 7, 1001–1014.
https://doi.org/10.2147/OTT.S44941

Suehnholz, S. P., Nissan, M. H., Zhang, H., Kundra, R., Nandakumar, S., Lu, C., Carrero, S., Dhaneshwar,
A., Fernandez, N., Xu, B. W., Arcila, M. E., Zehir, A., Syed, A., Brannon, A. R., Rudolph, J. E., Paraiso, E.,
Sabbatini, P. J., Levine, R. L., Dogan, A., … Chakravarty, D. (2024). Quantifying the Expanding Landscape
of Clinical Actionability for Patients with Cancer. Cancer Discovery, 14(1), 49–65.
https://doi.org/10.1158/2159-8290.CD-23-0467

Tanizaki, J., Okamoto, I., Okamoto, K., Takezawa, K., Kuwata, K., Yamaguchi, H., & Nakagawa, K. (2011).
MET Tyrosine Kinase Inhibitor Crizotinib (PF-02341066) Shows Differential Antitumor Effects in Non-small
Cell Lung Cancer According to MET Alterations. Journal of Thoracic Oncology, 6(10), 1624–1631.
https://doi.org/10.1097/JTO.0b013e31822591e9

Tiedt, R., Degenkolbe, E., Furet, P., Appleton, B. A., Wagner, S., Schoepfer, J., Buck, E., Ruddy, D. A.,
Monahan, J. E., Jones, M. D., Blank, J., Haasen, D., Drueckes, P., Wartmann, M., McCarthy, C., Sellers, W.
R., & Hofmann, F. (2011). A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a Spectrum
of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients. Cancer Research,
71(15), 5255–5264. https://doi.org/10.1158/0008-5472.CAN-10-4433

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2),
455–461. https://doi.org/10.1002/jcc.21334

Vigna, E., Gramaglia, D., Longati, P., Bardelli, A., & Comoglio, P. M. (1999). Loss of the exon encoding the
juxtamembrane domain is essential for the oncogenic activation of TPR-MET. Oncogene, 18(29),
4275–4281. https://doi.org/10.1038/sj.onc.1202791

Wang, C., & Lu, X. (2023). Targeting MET: Discovery of Small Molecule Inhibitors as Non-Small Cell Lung
Cancer Therapy. Journal of Medicinal Chemistry, 66(12), 7670–7697.
https://doi.org/10.1021/acs.jmedchem.3c00028

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1186/s13059-017-1272-5
https://doi.org/10.1186/s13059-017-1272-5
https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.21037/tlcr-20-1113
https://doi.org/10.2147/OTT.S44941
https://doi.org/10.2147/OTT.S44941
https://doi.org/10.1158/2159-8290.CD-23-0467
https://doi.org/10.1097/JTO.0b013e31822591e9
https://doi.org/10.1097/JTO.0b013e31822591e9
https://doi.org/10.1158/0008-5472.CAN-10-4433
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/acs.jmedchem.3c00028
https://doi.org/10.1021/acs.jmedchem.3c00028
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Warmuth, M., Kim, S., Gu, X., Xia, G., & Adrián, F. (2007). Ba/F3 cells and their use in kinase drug
discovery. Current Opinion in Oncology, 19(1), 55–60. https://doi.org/10.1097/CCO.0b013e328011a25f

Wójcikowski, M., Ballester, P. J., & Siedlecki, P. (2017). Performance of machine-learning scoring functions
in structure-based virtual screening. Scientific Reports, 7(1), 46710. https://doi.org/10.1038/srep46710

Wood, G. E., Hockings, H., Hilton, D. M., & Kermorgant, S. (2021). The role of MET in chemotherapy
resistance. Oncogene, 40(11), 1927–1941. https://doi.org/10.1038/s41388-020-01577-5

Yao, Y., Yang, H., Zhu, B., Wang, S., Pang, J., Wu, X., Xu, Y., Zhang, J., Zhang, J., Ou, Q., Tian, H., &
Zhao, Z. (2023). Mutations in the MET tyrosine kinase domain and resistance to tyrosine kinase inhibitors
in non-small-cell lung cancer. Respiratory Research, 24(1), 28. https://doi.org/10.1186/s12931-023-02329-1

Zhang, S., Krieger, J. M., Zhang, Y., Kaya, C., Kaynak, B., Mikulska-Ruminska, K., Doruker, P., Li, H., &
Bahar, I. (2021). ProDy 2.0: Increased scale and scope after 10 years of protein dynamics modelling with
Python. Bioinformatics, 37(20), 3657–3659. https://doi.org/10.1093/bioinformatics/btab187

Zuccotto, F., Ardini, E., Casale, E., & Angiolini, M. (2010). Through the “Gatekeeper Door”: Exploiting the
Active Kinase Conformation. Journal of Medicinal Chemistry, 53(7), 2681–2694.
https://doi.org/10.1021/jm901443h

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1097/CCO.0b013e328011a25f
https://doi.org/10.1038/srep46710
https://doi.org/10.1038/s41388-020-01577-5
https://doi.org/10.1186/s12931-023-02329-1
https://doi.org/10.1093/bioinformatics/btab187
https://doi.org/10.1021/jm901443h
https://doi.org/10.1021/jm901443h
https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


Supplemental information

Figure 1 - figure supplement 1. Structural inhibitor classification and dose-response determination.
(A) Type I (crizotinib, 2WGJ; tepotinib, 4R1V; capmatinib; savolitinib, 6SDE; NVP-BVU972, 3QTI) and type
II (merestinib, 4EEV; cabozantinib; glesatinib) inhibitor-bound MET kinase domain structures globally
aligned. Hinge (gray) and G1163 (represented as a sphere) are highlighted to show the kinase domain
solvent-front relative to each inhibitor. Inhibitors lacking experimental structures (capmatinib, cabozantinib,
glumetinib, and glesatinib) were docked onto a representative type I (PDB 2WGJ) and type II (4EEV)
structure through AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (B) Solvent-front and G1163
highlighted relative to the ATP-bound kinase domain crystal structure (3DKC) and all inhibitors screened.
(C) Dose-response curves for each inhibitor against the TPR-fusion MET and MET∆Ex14 intracellular
domains, stably expressed in Ba/F3 cells.
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Figure 1 - figure supplement 2. Correlation analysis of the MET kinase domain site saturation
mutagenesis library across replicates and conditions. Replicate correlation analysis for each inhibitor
for both the TPR-fusion MET background scores with Enrich2.
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Figure 1 - figure supplement 3. Correlation analysis of the MET∆Ex14 kinase domain site
saturation mutagenesis library across replicates and conditions. Replicate correlation analysis
for each inhibitor for the TPR-fusion MET∆Ex14 background score with Enrich2.
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Figure 1 - figure supplement 4 . Fitness landscapes of the MET kinase domain against a panel of 11
inhibitors. Heatmap for the DMSO control condition and all inhibitor fitness scores from Rosace,
subtracted from DMSO for >99% of MET kinase domain variants in the full intracellular domain background
in the context of the TPR-fusion.
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Figure 2 - figure supplement 5. Mutational landscape of the MET∆Ex14 kinase domain under
11 ATP-competitive inhibitor selection. (A) Distributions of all variants (wild-type synonymous,
early stop, and missense) for each condition, scored with Rosace and normalized to the growth rate
of the DMSO control population. (B) Correlation plots for all mutational fitness scores for each drug
against DMSO, fitted with a linear regression and Pearson’s R value displayed. (C) Heatmap
showing the Pearson’s R correlation for each condition against each other, annotated by condition
and inhibitor type. Correlations are colored according to a scale bar from gray to blue (low to high
correlation).
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Figure 5 - figure supplement 1. Statistically filtered resistance mutations for grouped type I,
type II, and type I½ inhibitors for MET. (A-C) Heatmaps of the sum of resistance mutations grouped
for type I (pink), type II (blue), and type I½ (green) for MET.
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Figure 6 - figure supplement 1. Cross-comparison of type I and type II inhibitor pairs. Scatter
plots of each type II inhibitor fitness scores (cabozantinib, glesatinib analog, merestinib; axis in blue)
against each type I inhibitor (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, NVP-BVU972;
axis in pink).
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Figure 6 - figure supplement 2. Cross-comparison analysis of inhibitors within the same type.
Scatter plots of each inhibitor pair within the type II group (cabozantinib, glesatinib analog, merestinib;
axes in blue) and within the type I group (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib,
NVP-BVU972; axes in pink).
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Figure 7 - figure supplement 1. Distribution and visualization of features used in the XGBoost
machine learning models. (A) Distribution of ESM LLR vs. Experimental fitness (top) and ∆∆G vs.
Experimental fitness (bottom). (B) Distribution of all features (except ESM LLR and ∆∆G) extracted
and used for the XGBoost models. The features that were incorporated in the best performing model
are shown in yellow. The red dashed lines within each distribution show the edges of bins used to bin
the feature values. (C) ∆∆∆G calculated from predicted ∆∆G Type I (PDB 2WGJ) (left) and Type II
(PDB 4EEV) (right) MET kinase structure by subtracting type II ∆∆G from type I ∆∆G. The key regions
showing difference in conformation between type I and II structures are the DFG motif (purple) and
aC helix (teal). (D) Calculation of “residue to ATP” distance feature for residue D1228 in ATP bound
MET Kinase structure (3DKC) is shown. Centroid of the ATP molecule is shown as a pink sphere. (E)
Example of ∆Volume feature calculation using the difference between the volume of Asp and Cys. (F)
Ensemble of MET kinase domain crystal structures aligned and RMSF of a given residue (D1228 in
this example). (G) The shortest distance between the inhibitor and a mutation calculated from the
Umol predicted variant-inhibitor structure. (H) The binding pocket of crizotinib in the predicted Umol
structure. Pocket volume, hydrophobicity score, polarity score and RF score are calculated from this
binding site. (I) Residue RMSD feature is described by the Umol predicted structure of variant
D1228C (pink) superposed onto the wild-type reference structure (PDB 2WGJ, gray) and RMSD
between D1228 in the wild-type structure and 1228C in the variant structure. (J) Ligand RMSD
feature The Umol predicted structure of variant D1228C (pink) superposed onto the wild-type
reference structure (PDB 2WGJ, gray) and RMSD between crizotinib in the wild-type structure (pink)
and in the variant structure (blue).
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